Skip to main content
Log in

U(VI) reduction by Fe(II) on hematite nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoscale size effects on U(VI) reduction by Fe(II) on hematite were investigated with four aerosol-synthesized hematite nanoparticles (12, 30, 50, 125 nm) and one aqueous-synthesized hematite (70 nm). Batch experiments were conducted at loadings of 0.01 mM U(VI) and 5 mM Fe(II) at pH 7.5 and 9.0. Rate constants for reduction of U(VI) to U(IV) were determined using a pseudo-first order reaction rate law. Reduction was faster at pH 7.5 than at pH 9.0. Rate constants were higher for aerosol-synthesized hematite than for aqueous-synthesized hematite. Rate constants were not significantly different for the 30, 50, and 125 nm particles. However, reduction was two orders of magnitude faster for the 12 nm hematite particles. Possible explanations for the dramatically faster reduction with the 12 nm hematite include the formation of a more reactive solid such as magnetite, effects on electron conduction through hematite, and quantum confinement effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anschutz AJ, Penn RL (2005) Reduction of crystalline iron(III) oxyhydroxides using hydroquine: influence of phase and particle size. Geochem Trans 6:60–66

    Article  CAS  Google Scholar 

  • Behrends T, Van Cappellen P (2005) Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions. Chem Geol 220:315–327

    Article  CAS  Google Scholar 

  • Benjamin MM, Sletten RS, Bailey RP, Bennett T (1996) Sorption and filtration of metals using iron-oxide-coated sand. Water Res 30:2609–2620

    Article  CAS  Google Scholar 

  • Boyanov MI, O’Loughlin EJ, Roden EE, Fein JB, Kemner KM (2007) Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: the influence of speciation on uranyl reduction studied by titration and XAFS. Geochim Cosmochim Acta 71:1898–1912

    Article  CAS  Google Scholar 

  • Brus LE (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potential of small semiconductor crystallites. J Chem Phys 79:5566–5571

    Article  CAS  Google Scholar 

  • Catalano JG, Fenter P, Park C, Zhang Z, Rosso KM (2010) Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH. Geochim Cosmochim Acta 74:1498–1512

    Article  CAS  Google Scholar 

  • Chen LX, Liu T, Thurnauer MC, Csencsits R, Rajh T (2002) Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations. J Phys Chem B 106:8539–8546

    Article  CAS  Google Scholar 

  • Cheng K, He YP, Miao YM, Zou BS, Wang YG, Wang TH, Zhang XT, Du ZL (2006) Quantum size effect on surface photovoltage spectra: alpha-Fe2O3 nanocrystals on the surface of monodispersed silica microsphere. J Phys Chem B 110:7259–7264

    Article  CAS  Google Scholar 

  • Chernyshova IV, Hochella MF Jr, Madden AS (2007) Size-dependence structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 9:1736–1750

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (1997) The iron oxides. Wiley, New York, NY

    Google Scholar 

  • Cwiertny DM, Handler RM, Schaefer MV, Grassian VH, Scherer MM (2008) Interpreting nanoscale size-effects in aggregated Fe-oxide suspensions: reaction of Fe(II) with goethite. Geochim Cosmochim Acta 72:1365–1380

    Article  CAS  Google Scholar 

  • Gao Y, Wahi R, Kan AT, Falkner JC, Colvin VL, Tomson MB (2004) Adsorption of cadmium on anatase nanoparticles—effect of crystal size and pH. Langmuir 20:9585–9593

    Article  CAS  Google Scholar 

  • Giammar DE, Maus CJ, Xie LY (2007) Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environ Eng Sci 24:85–95

    Article  CAS  Google Scholar 

  • Handler RM, Beard BL, Johnson CM, Scherer MM (2009) Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. Environ Sci Technol 43:1102–1107

    Article  CAS  Google Scholar 

  • He YT, Wan JM, Tokunaga T (2008) Kinetic stability of hematite nanoparticles: the effect of particle sizes. J Nanopart Res 10:321–332

    Article  CAS  Google Scholar 

  • Ilton ES, Boily JF, Buck EC, Skomurski FN, Rosso KM, Cahill CL, Bargar JR, Felmy AR (2010) Influence of dynamical conditions on the reduction of U-VI at the magnetite-solution interface. Environ Sci Technol 44:170–176

    Article  CAS  Google Scholar 

  • Jang JH, Dempsey BA, Burgos WD (2008) Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid. Water Res 42:2269–2277

    Article  CAS  Google Scholar 

  • Jeon BH, Dempsey BA, Burgos WD, Barnett MO, Roden EE (2005) Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides. Environ Sci Technol 39:5642–5649

    Article  CAS  Google Scholar 

  • Korgel BA, Monbouquette HG (1997) Quantum confinement effects enable photocatalyzed nitrate reduction at neutral pH using Cds nanocrystals. J Phys Chem B 101:5010–5017

    Article  CAS  Google Scholar 

  • Larese-Casanova P, Scherer MM (2007) Fe(II) sorption on hematite: new insights based on spectroscopic measurements. Environ Sci Technol 41:471–477

    Article  CAS  Google Scholar 

  • Leussing DL, Kolthoff IM (1953) The solubility product of ferrous hydroxide and the ionization of the aquo-ferrous ion. J Am Chem Soc 75:2476–2479

    Article  CAS  Google Scholar 

  • Liger E, Charlet L, Van Cappellen P (1999) Surface catalysis of uranium(VI) reduction by iron(II). Geochim Cosmochim Acta 63:2939–2955

    Article  CAS  Google Scholar 

  • Madden AS, Hochella MF (2005) A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles. Geochim Cosmochim Acta 69:389–398

    Article  CAS  Google Scholar 

  • Madden AS, Hochella MF, Luxton TP (2006) Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim Cosmochim Acta 70:4095–4104

    Article  CAS  Google Scholar 

  • McMillin BK, Biswas P, Zachariah MR (1996) In situ characterization of vapor phase growth of iron oxide-silica nanocomposites.1. 2-D planar laser-induced fluorescence and Mie imaging. J Mater Res 11:1552–1561

    Article  CAS  Google Scholar 

  • Monticone S, Tufeu R, Kanaev AV, Scolan E, Sanchez C (2000) Quantum size effect in TiO2 nanoparticles: does it exist? Appl Surf Sci 162–163:565–570

    Article  Google Scholar 

  • Nano GV, Strathmann TJ (2008) Application of surface complexation modeling to the reactivity of iron(II) with nitroaromatic and oxime carbamate contaminants in aqueous TiO2 suspensions. J Colloid Interface Sci 321:350–359

    Article  CAS  Google Scholar 

  • Payne TE, Lumpkin GR, Waite TD (1998) Uranium(VI) adsorption on model minerals: controlling factors and surface complexation. In: Jenne EA (ed) Adsorption of metals by Geomedia. Academic Press, San Diego, pp 75–97

    Chapter  Google Scholar 

  • Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J Chem Phys 79:1086–1087

    Article  CAS  Google Scholar 

  • Rosso KM, Yanina SV, Gorski CA, Larese-Casanova P, Scherer MM (2010) Connecting observations of hematite (α-Fe2O3) growth catalyzed by Fe(II). Environ Sci Technol 44:61–67

    Article  CAS  Google Scholar 

  • Rustad JR, Felmy AR (2005) The influence of edge sites on the development of surface charge on goethite nanoparticles: a molecular dynamics investigation. Geochim Cosmochim Acta 69:1405–1412

    Article  CAS  Google Scholar 

  • Schecher WD, McAvoy DC (2001) MINEQL+: a chemical equilibrium modeling system version 4.5 for Windows. Environmental Research Software, Hallowell, ME

    Google Scholar 

  • Scott TB, Allen GC, Heard PJ, Randell MG (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim Cosmochim Acta 69:5639–5646

    Article  CAS  Google Scholar 

  • Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor? J Phys Chem B 99:16646–16654

    Article  CAS  Google Scholar 

  • Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    Article  CAS  Google Scholar 

  • Toyoda T, Tsuboya I (2003) Apparent band-gap energies of mixed TiO2 nanocrystals with anatase and rutile structures characterized with photoacoustic spectroscopy. Rev Sci Instrum 74:782–784

    Article  CAS  Google Scholar 

  • Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite—application of a surface complexation model. Geochim Cosmochim Acta 58:5465–5478

    Article  CAS  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433

    Article  CAS  Google Scholar 

  • Wersin P, Hochella MF Jr, Persson P, Redden G, Leckie JO, Harris DW (1994) Interaction between aqueous uranium(VI) and sulfide minerals: spectroscopic evidence for sorption and reduction. Geochim Cosmochim Acta 58:2829–2843

    Article  CAS  Google Scholar 

  • Williams AGB, Scherer MM (2004) Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environ Sci Technol 38:4782–4790

    Article  CAS  Google Scholar 

  • Yan B, Wrenn BA, Basak S, Biswas P, Giammar DE (2008) Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens. Environ Sci Technol 42:6526–6531

    Article  CAS  Google Scholar 

  • Yanina SV, Rosso KM (2008) Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320:218–222

    Article  CAS  Google Scholar 

  • Zeng H, Singh A, Basak S, Ulrich KU, Sahu M, Biswas P, Catalano JG, Giammar DE (2009) Nanoscale size effects on uranium(VI) adsorption to hematite. Environ Sci Technol 43:1373–1378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation (BES 0608749). The Center for Materials Innovation at Washington University provided supplemental support. Dr. Soubir Basak and Manoranjan Sahu in Dr. Pratim Biswas’ Aerosol and Air Quality Research Laboratory at Washington University provided the aerosol-synthesized hematite nanoparticles. Zimeng Wang performed selected control experiments. The valuable comments of four anonymous reviewers were helpful in revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Giammar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, H., Giammar, D.E. U(VI) reduction by Fe(II) on hematite nanoparticles. J Nanopart Res 13, 3741–3754 (2011). https://doi.org/10.1007/s11051-011-0296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0296-0

Keywords

Navigation