Skip to main content
Log in

Nanoengineering of methylene blue loaded silica encapsulated magnetite nanospheres and nanocapsules for photodynamic therapy

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Core–shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug “Methylene blue” (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core–shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bourlinos A, Simopoulos A, Boukos N, Petridis D (2002) Magnetic modification of the external surfaces in the MCM-41 porous silica: synthesis, characterization, functionalization. J Phys Chem B 105:7432–7437

    Article  Google Scholar 

  • Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston

  • Bruce I, Taylor J, Todd M, Davies M, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterization, application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145−160

    Article  CAS  Google Scholar 

  • Chen S, Dong P, Yang G, Yang J (1996) Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis, condensation of tetraethylorthosilicate. Ind Eng Chem Res 35:4487–4493

    Article  CAS  Google Scholar 

  • Chujo Y, Matsuki H, Kure S, Saegusa T, Yazawa T (1994) Control of pore size of porous silica by means of pyrolysis of an organic–inorganic polymer hybrid. Chem Soc Chem Commun 5:635–636

    Article  Google Scholar 

  • Cullity B (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publication Company

  • Deng Y, Wang C, Hu J, Yang W, Fu S (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A 262:87–93

    Article  CAS  Google Scholar 

  • Dougherty T (1987) Photosensitiezers: therapy, detection of malignant tumors. Photochem Photobiol 45:879–889

    Article  CAS  Google Scholar 

  • Dougherty T, Gomer C, Henderson B, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  CAS  Google Scholar 

  • Ehrlich P (1960) The collected papers of Paul Ehrlich. Pergamon, London

    Google Scholar 

  • Fahmy T, Fong P, Goyal A, Saltzman W (2005) Targeted nanoparticles for drug delivery. Mater Today 1:18–26

    Article  Google Scholar 

  • Gupta A, Gupta M (2005) Synthesis, surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Hasan T, Moor A, Ortel B (2000) Cancer medicine, 5th edn. BC Decker Inc., Hamilton, ON

    Google Scholar 

  • He Y, Wang S, Li C, Miao Y, Wu Z, Zou B (2005) Synthesis, characterization of functionalized silica-coated Fe3O4superparamagnetic nanocrystals for biological applications. J Phys D 38:1342–1350

    Article  CAS  Google Scholar 

  • He R, You X, Shao J, Gao F, Pan B, Cui D (2007) Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology 18:315601

    Article  Google Scholar 

  • Hilder T, Hill J (2009) Modeling the loading, unloading of drugs into nanotubes. Small 5:300–308

    Article  CAS  Google Scholar 

  • Hodgkins R, Ahniyaz A, Parekh K, Belova L, Bergstrom L (2007) Maghemite nanocrystal impregnation by hydrophobic surface modification of mesoporous silica. Langmuir 23:8838–8844

    Article  CAS  Google Scholar 

  • Huang C, Hou C, Chen C, Tsai Y, Chang L, Wei H, Hsieh K, Chan C (2008) Magnetic SiO2/Fe3O4 colloidal crystals. Nanotechnology 19:55701

    Article  Google Scholar 

  • Jang S, Wientjes M, Lu D, Au J (2003) Drug delivery, transport to solid tumors. Pharm Res 20:1337–1350

    Article  CAS  Google Scholar 

  • Kim D, Mikhaylova M, Zhang Y, Muhammed M (2003) Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater 15:1617–1627

    Article  CAS  Google Scholar 

  • Konan Y, Gruny R, Allemann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 66:89–106

    Article  CAS  Google Scholar 

  • Levy J, Obochi M (1996) New applications in photodynamic therapy introduction. Photochem Photobiol 64:737–739

    Article  CAS  Google Scholar 

  • Liu X, Ma Z, Xing J, Liu H (2004) Preparation, characterization of amino-silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270:1–6

    Article  CAS  Google Scholar 

  • Lu Z, Dai J, Song X, Wang G, Yang W (2008) Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids Surf A 317:450–456

    Article  CAS  Google Scholar 

  • Mehta R, Upadhyay R, Charles S, Ramchand C (1997) Direct binding of protein to magnetic particles. Biotechnol Tech 11:493–496

    Article  CAS  Google Scholar 

  • Mohapatra S, Mallck S, Maiti T, Ghosh S, Pramanik P (2007) Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 18:385102

    Article  Google Scholar 

  • Monte F, Morales MP, Levy D, Fernandez A, Ocaña M, Roig A, Molins E, Grady KO, Serna CJ (1997) Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir 13:3627–3634

    Article  Google Scholar 

  • Morel A, Nikitenko S, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M (2008) Sonochemical approach to the synthesis of Fe3O4@SiO2 core−shell nanoparticles with tunable properties. ACS Nano 2:847–856

    Article  CAS  Google Scholar 

  • Neal D, Hirsch L, Halas N, Payne J, West J (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Article  Google Scholar 

  • Park S, Lim J, Kim J, Yun H, Kim C (2005) In vivo, in vitro investigation of photosensitizer-adsorbed superparamagnetic nanoparticles for photodynamic therapy. IEEE Trans Magn 41:4111–4113

    Article  CAS  Google Scholar 

  • Peng Z, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395

    Article  CAS  Google Scholar 

  • Peng ZA, Peng XG (2002) Nearly monodisperse, shape-controlled CdSe nanocrystals via alternative routes: nucleation, growth. J Am Chem Soc 124:3343–3353

    Article  CAS  Google Scholar 

  • Santa S, Tapec R, Theodoropoulou N, Dobson J, Hebarad A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906

    Article  Google Scholar 

  • Sapra S, Poppe J, Eychmiiler A (2007) CdSe nanorod synthesis: a new approach. Small 3:1886–1888

    Article  CAS  Google Scholar 

  • Seup C, Sun L, Bin P, Kikuo O (2004) Templated synthesis of silica hollow spheres by spray pyrolysis. J Chem Eng Jpn 37:1099–1104

    Article  Google Scholar 

  • Sibata C, Colussi V, Olenick N, Kinsella T (2000) Photodynamic therapy: a new concept in medical treatment. Braz J Med Biol Res 33:869–880

    Article  CAS  Google Scholar 

  • Sieben S, Bergemann C, Lubbe A, Brockmann B, Rescheleit D (2001) Comparison of different particles, methods for magnetic isolation of circulating tumor cells. J Magn Magn Mater 225:175–179

    Article  CAS  Google Scholar 

  • Singhal GS, Rabinowitch E (1967) Changes in the absorption spectrum of methylene blue with pH. J Phys Chem 71:3347–3349

    Article  CAS  Google Scholar 

  • Stewart B, Kleihues P (2003) World Cancer Report. IARC Non-serial Publication, Lyon

    Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  • Tada DB, Vono LLR, Duarte EL, Itri R, Kiyohara PK, Baptista MS, Rossi LM (2007) Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 23:8194–8199

    Google Scholar 

  • Tartaj P, Gonzalez-Carreno T, Serna C (2002) Synthesis of nanomagnets dispersed in colloidal silica cages with applications in chemical separation. Langmuir 18:4556–4558

    Article  CAS  Google Scholar 

  • Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy, imaging. AAPS J 9:E128–E147

    Article  CAS  Google Scholar 

  • Tsang S, Yu C, Gao X, Tam K (2006) Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier. J Phys Chem B 110:16914–16922

    Article  CAS  Google Scholar 

  • Vasir J, Labhasetwar V (2005) Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 4:363–374

    CAS  Google Scholar 

  • Vestal C, Zhang Z (2003) Synthesis, magnetic characterization of Mn, Co spinel ferrite-silica nanoparticles with tunable magnetic core. J Nano Lett 3:1739–1743

    Article  CAS  Google Scholar 

  • Zhang J, Srivastava R, Misra R (2007) Core–shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, LCST of viable drug-targeting delivery system. Langmuir 23:6342–6351

    Article  CAS  Google Scholar 

  • Zhang J, Rana S, Srivastava R, Misra R (2008a) On the chemical synthesis, drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Actabiomaterialia 4:40–48

    CAS  Google Scholar 

  • Zhang M, Cushing B, Charles J (2008b) Synthesis, characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles. Nanotechnology 19:85601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Chudasama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andhariya, N., Chudasama, B., Mehta, R.V. et al. Nanoengineering of methylene blue loaded silica encapsulated magnetite nanospheres and nanocapsules for photodynamic therapy. J Nanopart Res 13, 3619–3631 (2011). https://doi.org/10.1007/s11051-011-0279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0279-1

Keywords

Navigation