Skip to main content

Advertisement

Log in

Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The formation of amyloid aggregates by association of peptides into ordered structures is hallmark of certain neurodegenerative disorders. Exploring the effect of specific nanoparticles on the formation of amyloid fibrils may contribute toward a mechanistic understanding of the aggregation processes, leading to design nanoparticles that modulate the formation of toxic amyloid plaques. Uniform maghemite (γ-Fe2O3) magnetic nanoparticles, containing fluorescein covalently encapsulated within (F-γ-Fe2O3), were prepared. These F-γ-Fe2O3 nanoparticles of 14.0 ± 4.0 nm were then coated with human serum albumin (HSA) via a precipitation process. Covalent conjugation of the spacer arm succinimidyl polyethylene glycol succinimidyl ester (NHS–PEG–NHS) to the F-γ-Fe2O3~HSA nanoparticles was then accomplished by interacting the primary amine groups of the HSA coating with excess NHS–PEG–NHS molecules. Covalent conjugation of the peptides amyloid-β 40 (Aβ40) or Leu-Pro-Phe-Phe-Asp (LPFFD) onto the surface of the former fluorescent nanoparticles was then performed, by interacting the terminal activated NHS groups of the PEG derivatized F-γ-Fe2O3~HSA nanoparticles with primary amino groups of the peptides. Kinetics of the Aβ40 fibrillation process in the absence and presence of varying concentrations of the Aβ40 or LPFFD conjugated nanoparticles were also elucidated. The non-peptide conjugated fluorescent nanoparticles do not affect the Aβ40 fibrillation process significantly. However, the Aβ40-conjugated nanoparticles (F-γ-Fe2O3~HSA–PEG–Aβ40) accelerate the fibrillation process while the LPFFD-conjugated nanoparticles (F-γ-Fe2O3~HSA–PEG–LPFFD) inhibit it. By applying MRI and fluorescence imaging techniques simultaneously these bioactive fluorescent magnetic iron oxide nanoparticles can be used as an efficient tool to study and control the Aβ40 amyloid fibril formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adessi C, Frossard MJ, Biossard C, Fraga S, Bieler S, Ruckle T, Vilbois F, Robinson SM, Mutter M, Banks WA, Soto C (2003) Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer disease. J Biol Chem 278:13905–13911

    Article  CAS  Google Scholar 

  • Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci 9:1960–1967

    Article  CAS  Google Scholar 

  • Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E, Walsh DM, Dawson K, Linse S (2008) Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J Am Chem Soc 130:15437–15443

    Article  CAS  Google Scholar 

  • Chen S, Wetzel R (2001) Solubilization and disaggregation of polyglutamine peptides. Protein Sci 10:887–891

    Article  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  Google Scholar 

  • Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3:87–104

    Article  CAS  Google Scholar 

  • Cox DL, Lashuel H, Lee KYC, Singh RRP (2005) The materials science of protein aggregation. MRS Bull 30:452–457

    Article  CAS  Google Scholar 

  • Cui ZR, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, Mumper RJ (2005) Novel d-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm 59:263–272

    Article  CAS  Google Scholar 

  • De Vries IJM, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJG, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JWM, Scheenen TWJ, Punt CJA, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  Google Scholar 

  • Fei L, Perrett S (2009) Effect of nanoparticles on protein folding and fibrillogenesis. Int J Mol Sci 10:646–655

    Article  CAS  Google Scholar 

  • Griffiths HH, Morten IJ, Hooper NM (2008) Emerging and potential therapies for Alzheimer’s disease. Expert Opin Ther Targets 12:693–704

    Article  CAS  Google Scholar 

  • Haass C, Schlossmacher MG, Hung AY, Vigopelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ (1992) Amyloid beta-peptide is produced by cultured-cells during normal metabolism. Nature 359:322–325

    Article  CAS  Google Scholar 

  • Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357

    Article  CAS  Google Scholar 

  • Ji XJ, Naistat D, Li CQ, Orbulescu J, Leblanc RM (2006) An alternative approach to amyloid fibrils morphology: CdSe/ZnS quantum dots labelled beta-amyloid peptide fragments A beta (31–35), A beta (1–40) and A beta (1–42). Colloid Surf B Biointerfaces 50:104–111

    Article  CAS  Google Scholar 

  • Klunk WE, Debnath ML, Koros AMC, Pettegrew JW (1998) Chrysamine-G, a lipophilic analogue of Congo red, inhibits A beta-induced toxicity in PC12 cells. Life Sci 63:1807–1814

    Article  CAS  Google Scholar 

  • Klunk WE, Wang YM, Huang GF, Debnath ML, Holt DP, Mathis CA (2001) Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci 69:1471–1484

    Article  CAS  Google Scholar 

  • Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6:110–115

    Article  CAS  Google Scholar 

  • Kung HF (2004) Imaging of Aβ plaques in the brain of Alzheimer’s disease. ICS 1264:3–9

    CAS  Google Scholar 

  • Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443:774–779

    Article  CAS  Google Scholar 

  • Lee HJ, Zhang Y, Zhu C, Duff K, Pardridge WM (2002) Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Aβ peptide radiopharmaceutical. J Cereb Blood Flow Metab 22:223–231

    Article  CAS  Google Scholar 

  • Levine H (1995) Thioflavine T interaction with amyloid β-sheet structures. Amyloid 2:1–6

    Article  CAS  Google Scholar 

  • Link CD, Johnson CJ, Fonte V, Paupard MC, Hall DH, Styren S, Mathis CA, Klunk WE (2001) Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol Aging 22:217–226

    Article  CAS  Google Scholar 

  • Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104:8691–8696

    Article  CAS  Google Scholar 

  • Maggio JE, Stimson ER, Ghilardi JR, Allen CJ, Dahl CE, Whitcomb DC, Vigna SR, Vinters HV, Labenski ME, Mantyh PW (1992) Reversible in vitro growth of Alzheimer disease β-amyloid plaques by deposition of labeled amyloid peptide. Proc Natl Acad Sci USA 89:5462–5466

    Article  CAS  Google Scholar 

  • Margel S, Gura S. Nucleation and growth of magnetic metal oxide nanoparticles and its use. WO/1999/062079; EC 1088315 (2003); Israel 139638 (2006)

  • Margel S, Tennenbaum T, Gura S, Tsubery M (2007) In: Zborowski M (ed) Laboratory techniques in biochemistry and molecular biology. Elsevier B.V., Amsterdam

  • Masters CL, Simms G, Weinman NA, Multhaup G, Mcdonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  CAS  Google Scholar 

  • Mathis CA, Lopresti BJ, Klunk WE (2007) Impact of amyloid imaging on drug development in Alzheimer’s disease. Nucl Med Biol 34:809–822

    Article  CAS  Google Scholar 

  • Niedre M, Ntziachristos V (2008) Elucidating structure and function in vivo with hybrid fluorescence and magnetic resonance imaging. Proc IEEE 96:382–396

    Article  CAS  Google Scholar 

  • Olmedo I, Araya E, Sanz F, Medina E, Arbiol J, Toledo P, Lueje A, Giralt E, Kogan MJ (2008) How changes in the sequence of the peptide CLPFFD-NH can modify the conjugation and stability of gold nanoparticles and their affinity for β-amyloid fibrils. Bioconjug Chem 19:1154–1163

    Article  CAS  Google Scholar 

  • Perlstein B, Ram Z, Daniels D, Ocherashvilli A, Roth Y, Margel S, Mardor Y (2008) Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring. Neuro-Oncology 10:153–161

    Article  CAS  Google Scholar 

  • Perlstein B, Lublin-Tennenbaum T, Marom I, Margel S (2009) Synthesis and characterization of functionalized magnetic nanoparticles with fluorescent probe capabilities for biological applications. J Biomed Mat Res B. doi:10.1002/jbm.b.31521

  • Quarta A, Corato RD, Manna L, Ragusa AARA, Pellegrino TAPT (2007) Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology. Nanobiosci IEEE Trans 6:298–308

    Article  Google Scholar 

  • Rocha S, Thunemann AF, Pereira MC, Coelho MAN, Mohwald H, Brezesinski G (2008) Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem 137:35–42

    Article  CAS  Google Scholar 

  • Rudge SR, Kurtz TL, Vessely CR, Catterall LG, Williamson DL (2000) Preparation, characterization, and performance of magnetic iron–carbon composite microparticles for chemotherapy. Biomaterials 21:1411–1420

    Article  CAS  Google Scholar 

  • Sair HI, Doraiswamy PM, Petrella JR (2004) In vivo amyloid imaging in Alzheimer’s disease. Neuroradiology 46:93–104

    Article  CAS  Google Scholar 

  • Scherer F, Anton M, Schillinger U, Henkel J, Bergemann C, Kruger A, Gansbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109

    Article  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  Google Scholar 

  • Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904

    Article  CAS  Google Scholar 

  • Sethuraman A, Belfort G (2005) Protein structural perturbation and aggregation on homogeneous surfaces. Biophys J 88:1322–1333

    Article  CAS  Google Scholar 

  • Sethuraman A, Vedantham G, Imoto T, Przybycien T, Belfort G (2004) Protein unfolding at interfaces: Slow dynamics of alpha-helix to beta-sheet transition. Proteins Struct Funct Bioinform 56:669–678

    Article  CAS  Google Scholar 

  • Seubert P, Vigopelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, Mccormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimers beta-peptide from biological-fluids. Nature 359:325–327

    Article  CAS  Google Scholar 

  • Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, Lanmark KJ, Baker JR (2008) Dendrimer-functionalized shell-cross linked iron oxide nanoparticles for in vivo magnetic resonance imaging of tumors. Adv Mater 20:1671–1678

    Article  CAS  Google Scholar 

  • Skaat H, Margel S (2009a) Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation. Nanotechnology 20:225106–225115

    Article  Google Scholar 

  • Skaat H, Margel S (2009b) Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-β fibrils and removal by a magnetic field. Biochem Biophys Res Commun 386:645–649

    Article  CAS  Google Scholar 

  • Skaat H, Sorci M, Georges B, Margel S (2008) Effect of maghemite nanoparticles on insulin amyloid fibril formation: selective labeling, kinetics, and fibril removal by a magnetic field. J Biomed Mat Res A 91A:342–351

    Article  Google Scholar 

  • Sunde M, Blake CC (1998) From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q Rev Biophys 31:1–39

    Article  CAS  Google Scholar 

  • Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768

    Article  CAS  Google Scholar 

  • Wengenack TM, Curran GL, Poduslo JF (2000) Targeting Alzheimer amyloid plaques in vivo. Nat Biotechnol 18:868–872

    Article  CAS  Google Scholar 

  • Wu WH, Sun X, Yu YP, Hu J, Zhao L, Liu Q, Zhao YF, Li YM (2008) TiO2 nanoparticles promote β-amyloid fibrillation in vitro. Biochem Biophys Res Commun 373:315–318

    Article  CAS  Google Scholar 

  • Yang J, Lim EK, Lee HJ, Park J, Lee SC, Lee K, Yoon HG, Suh JS, Huh YM, Haam S (2008) Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection. Biomaterials 29:2548–2555

    Article  CAS  Google Scholar 

  • Ziv O, Avtailion R, Margel S (2008) Acquired and natural immunogenicity of gelatin, dextran and human serum albumin conjugated to magnetite nanoparticles. J Biomed Mat Res A 85:1011–1021

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Judith Grinblat, Luba Burlaka, and Gregory Vishninsky (Bar-Ilan University, Israel) for their help in obtaining the HR/TEM images. These studies were partially supported by a BSF (Israel-USA Binational Science Foundation) grant, and by a Minerva Grant (Microscale and Nanoscale Particles and Films).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shlomo Margel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 TEM image of the F-γ-Fe2O3~HSA–PEG–Aβ40 nanoparticles 120.0 h after incubation in PBS at 37 °C

11051_2011_276_MOESM2_ESM.tif

Fig. S2 Kinetics of the Aβ40 fibrils formation in PBS at 37 °C in the absence (a) and in the presence of 100.0% (w/wAβ40) (b) of the F-γ-Fe2O3~HSA nanoparticles

11051_2011_276_MOESM3_ESM.tif

Fig. S3 ThT fluorescence intensity versus time of the 100.0% (w/wAβ40) F-γ-Fe2O3~HSA–PEG–Aβ40 nanoparticles in the absence (a) and in the presence (b) of the dissolved Aβ40 in PBS at 37 °C

11051_2011_276_MOESM4_ESM.tif

Fig. S4 HRTEM images (ac) representing higher magnifications of the inset c image shown in Fig. 9. Exposure of the Aβ40 protofibrils-coated γ-Fe2O3 nanoparticles to the electron beam for an extended period of time causes their gradual destruction (a, b), leaving only the inorganic crystalline γ-Fe2O3 nanoparticles (c)

Supplementary material 5 (TIFF 2897 kb)

Supplementary material 6 (TIFF 2717 kb)

11051_2011_276_MOESM7_ESM.tif

Fig. S5 TEM image of the Aβ40 fibrils labeled with 10.0% (w/wAβ40) of the F-γ-Fe2O3~HSA–PEG–Aβ40 nanoparticles, 60.0 h after the initiation of the fibrillation process. The nanoparticles were added before the onset the fibril formation, as described in the “Experimental” part

11051_2011_276_MOESM8_ESM.tif

Fig. S6 TEM image of the Aβ40 fibrils labeled with 10.0% (w/wAβ40) of the F-γ-Fe2O3~HSA–PEG–LPFFD nanoparticles, 160.0 h after the initiation of the fibrillation process. The nanoparticles were added before the onset the fibril formation, as described in the “Experimental” part

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skaat, H., Shafir, G. & Margel, S. Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles. J Nanopart Res 13, 3521–3534 (2011). https://doi.org/10.1007/s11051-011-0276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0276-4

Keywords

Navigation