Skip to main content
Log in

Redispersion of dried gold nanorods in the presence of 6-amino-1-hexanethiol hydrochloride

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Aggregates of phosphatidylcholine-passivated gold nanorods were prepared by the addition of hydrochloric acid in the presence of 6-amino-1-hexanethiol hydrochloride (AHT). The aggregates dried in vacuum formed a solid film showing a metallic gold color. In spite of the absence of the stable surface-wrapping agents, such as balky polymer or thiol-molecules that form stable self-organized films on a gold surface, the dried aggregates dispersed again in water. The redispersed gold nanorods in water did not form aggregates. If the dried nanorods were kept at room temperature for 24 h, they did not disperse in water again; however, at –30 °C, some of gold nanorods could be redispersed in water. At –80 °C, gold nanorods could be redispersed in water as colloidal nanoparticles even after 2 months. The phosphatidylcholine and AHT molecules on the nanorod surfaces contributed to the suppression of the contact of nanorods, which were in the metallic gold color films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun: 801–802

  • Chen C-C, Lin Y-P, Wang C-W, Tzeng H-C, Wu C-H, Chen Y-C, Chen C-P, Chen L-C, Wu Y-C (2006) DNA-gold nanorods conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 128:3709–3715

    Article  CAS  Google Scholar 

  • Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR (1997) LB film Ag nanoparitlce, Heath. Science 277:5334

    Article  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides base on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  • Gao J, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070

    Article  CAS  Google Scholar 

  • Gluodenis M, Foss CA Jr (2002) The effect of mutual orientation on the spectra of metal nanoparticles rod–rod and rod–sphere pairs. J Phys Chem B 106:9484–9489

    Article  CAS  Google Scholar 

  • Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17:1325–1330

    Article  CAS  Google Scholar 

  • Honda K, Niidome Y, Nakashima N, Kawazumi H, Yamada S (2006) End-to-end assemblies of gold nanorods adsorbed on a glass substrate modified with polyanion polymers. Chem Lett 35:852–853

    Article  Google Scholar 

  • Honda K, Kawazumi H, Yamada S, Nakashima N, Niidome Y (2007) Extraction of hexadecytrimethylammonium bromide from gold nanorod solutions: adsorption of gold nanorods on anionic glass surfaces. Trans Mater Res Soc Jpn 32:421–424

    CAS  Google Scholar 

  • Horiguchi Y, Niidome T, Yamada S, Nakashima N, Niidome Y (2007) Expression of plasmid DNA released from DNA conjugates of gold nanorods. Chem Lett 36:952–953

    Article  CAS  Google Scholar 

  • Horiguchi Y, Yamashita S, Niidome T, Nakashima N, Niidome Y (2008) Photoinduced release of oligonucleotide-conjugated silica-coated gold nanorods accompanied by moderate morphological changes. Chem Lett 37:718–719

    Article  CAS  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  Google Scholar 

  • Jain PK, Eustis S, El-Sayed MA (2006a) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, exciton-coupling model. J Chem Phys B 110:18243–18253

    Article  CAS  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006b) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: application in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  • Kawano T, Yamagata M, Takahashi H, Niidome Y, Yamada S, Katayama Y, Niidome T (2006) Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses. J Control Release 111:382–389

    Article  CAS  Google Scholar 

  • Kawano T, Niidome Y, Mori T, Katayama Y, Niidome T (2009) PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser. Bioconjugate Chem 20:209–212

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1994) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  • Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillation in gold and silver nanodots and nanorods. J Phys Chem B 103:8410

    Article  CAS  Google Scholar 

  • Link S, El-Sayed MA (2005) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 109:10531–10532

    Article  CAS  Google Scholar 

  • Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077

    Article  CAS  Google Scholar 

  • Markovich G, Collier CP, Heath JR (1998) Reversible metal–insulator transition in ordered metal nanocrystal monolayers observed by impedance spectroscopy. Phys Rev Lett 80:3807–3810

    Article  CAS  Google Scholar 

  • Markovich G, Collier CP, Henrichs SE, Remacle F, Levine PD (1999) Architectonic quantum dot solids. Acc Chem Res 32:415

    Article  CAS  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys (Lipzig) 25:377

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  • Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun: 544–557

  • Niidome Y, Nishioka K, Kawasaki H, Yamada S (2003) Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes. Chem Commun: 2376–2377

  • Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo application. J Control Release 114:343–347

    Article  CAS  Google Scholar 

  • Niidome Y, Honda K, Higashimoto K, Kawazumi H, Yamada S, Nakashima N, Sasaki Y, Ishida Y, Kikuchi J (2007) Surface modification of gold nanorods with synthetic cationic lipids. Chem Commun: 3777–3779

  • Niidome T, Akiyama Y, Shimoda K, Kawano T, Mori T, Katayama Y, Niidome Y (2008) In vivo monitoring of intravenously injected gold nanorods using near-infrared light. Small 4:1001–1007

    Article  CAS  Google Scholar 

  • Niidome Y, Nakamura Y, Honda K, Akiyama Y, Nishioka K, Kawasaki H, Nakashima N (2009) Characterization of silver ions adsorbed on gold nanorods: surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectroscopy. Chem Commun: 1754–1756

  • Niidome T, Ohga A, Akiyama Y, Watanabe K, Niidome Y, Mori T, Katayama Y (2010) Controlled release of PEG chain from gold nanorods: targeted delivery to tumor. Bioorg Med Chem 18:4453–4458

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17:6368–6374

    Article  CAS  Google Scholar 

  • Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA (2007) Peptide-conjugated gold nanorods for nuclear targeting. Bioconj Chem 18:1490–1497

    Article  CAS  Google Scholar 

  • Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2006) Silica-coating and hydrophobation of CTAB-stabilized gold nanorods. Chem Mater 18:2465–2467

    Article  CAS  Google Scholar 

  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005a) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  Google Scholar 

  • Pérez-Juste J, Rodríguez-Gonzárez B, Mulvaney P, Liz-Marzán LM (2005b) Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite. Adv Func Mater 15:1065–1071

    Article  Google Scholar 

  • Pietrobon B, Mceachran M, Kitaev V (2009) Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 3:21–26

    Article  CAS  Google Scholar 

  • Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125:8102–8103

    Article  CAS  Google Scholar 

  • Shiotani A, Mori T, Niidome T, Niidome Y, Katayama Y (2007) Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-IR laser irradiation. Langmuir 23:4012–4018

    Article  CAS  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucletotides with single base imperfections using gold nanoparticles. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  • Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650

    Article  CAS  Google Scholar 

  • Takahashi H, Niidome Y, Yamada S (2005) Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem Commun: 2247–2249

  • Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S (2006a) Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett 35:500–501

    Article  CAS  Google Scholar 

  • Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S (2006b) Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology 17:4431–4435

    Article  CAS  Google Scholar 

  • Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S (2006c) Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 22:2–5

    Article  CAS  Google Scholar 

  • Vial S, Pastoriza-Santos S, Pétrez-Juste J, Liz-Marzán LM (2007) Plasmon coupling in layer-by-layer assembled gold nanorod films. Langmuir 23:4606–4611

    Article  CAS  Google Scholar 

  • Wang C, Ma Z, Wang T, Su Z (2006) Synthesis, assembly, and biofunctionalization of silica coated gold nanorods for colorimetric biosensign. Adv Func Mater 16:1673–1678

    Article  CAS  Google Scholar 

  • Yamashita S, Niidome Y, Katayama Y, Niidome T (2009) Photochemical reaction of poly(ethylenegrycol) on gold nanorods induced by near infrared pulsed-laser irradiation. Chem Lett 38:731–734

    Google Scholar 

  • Yu Y-Y, Chang S-S, Lee C-L, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (No. 15350085), KAKENHI (Grant-in-Aid for Scientific Research) on priority area “Strong Photon-Molecule Coupling Fields (No. 470),” and a Grant-in-Aid for the Global COE Program “Science for Future Molecular Systems” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuro Niidome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honda, K., Kawazumi, H., Nakashima, N. et al. Redispersion of dried gold nanorods in the presence of 6-amino-1-hexanethiol hydrochloride. J Nanopart Res 13, 3413–3421 (2011). https://doi.org/10.1007/s11051-011-0263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0263-9

Keywords

Navigation