Skip to main content
Log in

Organic-phase synthesis of self-assembled gold nanosheets

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Amphiphilic gold nanoclusters with the diameter of 1.8 ± 0.2 nm were prepared by decomposition of organometallic gold precursor CH3AuPPh3 in the presence of mercaptoacids in o-xylene. Self-assembly of the 16-mercaptohexadecanoic acid protected gold clusters led to the formation of the nanosheets consisted of aligned gold clusters. The hydrogen bonding between the carboxylic groups attached on the adjacent gold clusters likely drives the self-assembly. This phenomenon was cross-verified by employing the preheated mercaptoacid-amine surfactant system where a part of the mercaptoacids and amines were converted into –NH3 +OOC– ion pair and interrupting a part of the hydrogen bonding sites to lead to the reduction in the size of the structures from nanosheets to nanobelts. Interestingly, we found the dependency of the luminescent properties on the extent of maintaining the self-assembly of the clusters intern dictated by the surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Auer F, Scotti M, Ulman A, Jordan R, Sellergren B, Garno J, Liu GY (2000) Nanocomposites by electrostatic interactions: 1 Impact of sublayer quality on the organization of functionalized nanoparticles on charged self-assembled layers. Langmuir 16:7554–7557

    Article  CAS  Google Scholar 

  • Bertilsson L, Potje-Kamloth K, Liess HD, Liedberg B (1999) On the adsorption of dimethyl methylphosphonate on self-assembled alkanethiolate monolayers: influence of humidity. Langmuir 15:1128–1135

    Article  CAS  Google Scholar 

  • Boal AK, Ilhan F, DeRouchey JE, Thurn-Albrecht T, Russell TP, Rotello VM (2000) Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404:746–748

    Article  CAS  Google Scholar 

  • Boubour E, Lennox RB (2000) Insulating properties of self-assembled monolayers, monitored by impedance spectroscopy. Langmuir 16:4222–4228

    Article  CAS  Google Scholar 

  • Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari F (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19

    Article  CAS  Google Scholar 

  • Cho EC, Choi SW, Camargo PHC, Xia Y (2010) Thiol-induced assembly of Au nanoparticles into chainlike structures and their fixing by encapsulation in silica shells or gelatin microspheres. Langmuir 26:10005–10012

    Article  CAS  Google Scholar 

  • Collier CP, Vossmeyer T, Heath JR (1998) Nanocrystal superlattices. Annu Rev Phys Chem 49:371–404

    Article  CAS  Google Scholar 

  • Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    Article  CAS  Google Scholar 

  • Dorogi M, Gomez J, Osifchin R, Andres RP, Reifenberger R (1995) Room-temperature coulomb blockade from a self-assembled molecular nanostructure. Phys Rev B 52:9071–9077

    Article  CAS  Google Scholar 

  • Fang C, Fan Y, Kong JM, Gao ZQ, Balasubramanian N (2008) Preparation of nanochain and nanosphere by self-assembly of gold nanoparticles. Appl Phys Lett 92:263108-1–263108-3

    Google Scholar 

  • Feldheim DL, Keating CD (1998) Self-assembly of single electron ttransistors and related devices. Chem Soc Rev 27:1–12

    Article  CAS  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  Google Scholar 

  • Ferrari M (2008) Beyond drug delivery. Nat Nanotechnol 3:131–132

    Article  CAS  Google Scholar 

  • Fialkowski M, Bishop KJM, Klajn R, Smoukov SK, Campbell CJ, Grzybowski BA (2006) Principles and implementations of dissipative (dynamic) self-assembly. J Phys Chem B 110:2482–2496

    Article  CAS  Google Scholar 

  • Fisher GL, Hooper AE, Opila RL, Allara DL, Winograd N (2000) The interaction of vapor-deposited Al atoms with CO2H groups at the surface of a self-assembled alkanethiolate monolayer on gold. J Phys Chem B 104:3267–3273

    Article  CAS  Google Scholar 

  • Groups A, Chapman RG, Ostuni E, Yan L, Whitesides GM (2000) Preparation of mixed self- assembled monolayers (SAMs) that resist adsorption of proteins using the reaction of amines with a SAM that presents interchain carboxylic. Langmuir 16:6927–6936

    Article  Google Scholar 

  • Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  CAS  Google Scholar 

  • Hecht S (2005) Optical switching of hierarchical self-assembly: towards “enlightened” materials. Small 1:26–29

    Article  CAS  Google Scholar 

  • Johnson SR, Evans SD, Brydson R (1998) Influence of a terminal functionality on the physical properties of surfactant-stabilized gold nanoparticles. Langmuir 14:6639–6647

    Article  CAS  Google Scholar 

  • Kalsin AM, Fialkowski M, Paszewski M, Smoukov SK, Bishop KJM, Grzybowski BA (2006) Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312:420–424

    Article  CAS  Google Scholar 

  • Kang Y, Erickson KJ, Taton TA (2005) Plasmonic nanoparticle chains via a morphological, sphere-to-string transition. J Am Chem Soc 127:13800–13801

    Article  CAS  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  • Kimura M, Kobayashi S, Kuroda T, Hanabusa K, Shirai H (2004) Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators. Adv Mater 16:335–338

    Article  CAS  Google Scholar 

  • Klajn R, Bishop KJM, Fialkowski M, Paszewski M, Campbell CJ, Gray TP, Grzybowski BA (2007) Plastic and moldable metals by self-assembly of sticky nanoparticle aggregates. Science 316:261–264

    Article  CAS  Google Scholar 

  • Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975

    Article  CAS  Google Scholar 

  • Lehn JM (1990) Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed 29:1304–1319

    Article  Google Scholar 

  • Maheshwari V, Kane J, Saraf RF (2008) Self-assembly of a micrometers-long one-dimensional network of cemented Au nanoparticles. Adv Mater 20:284–287

    Article  CAS  Google Scholar 

  • Mirkin CA, Retsinger RL, Mucic RC, Storhoff J (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  • Nam J-MC, Thaxton S, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  CAS  Google Scholar 

  • Nam KT, Shelby SA, Choi PH, Marciel AB, Ritchie R, Tan L, Chu TK, Mesch RA, Lee B-C, Connolly MD, Kisielowski C, Zuckermann RN (2010) Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 9:454–460

    Google Scholar 

  • Novak JP, Feldheim DL (2000) Assembly of phenylacetylene-bridged silver and gold nanoparticle arrays. J Am Chem Soc 122:3979–3980

    Article  CAS  Google Scholar 

  • Pacholski C, Kornowski A, Weller H (2002) Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed 41:1188–1191

    Article  CAS  Google Scholar 

  • Philp D, Stoddart JF (1996) Self-assembly in natural and unnatural systems. Angew Chem Int Ed 35:1154–1196

    Article  Google Scholar 

  • Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ (2002) Digestive ripening of thiolated gold nanoparticles: the effect of alkyl chain length. Langmuir 18:7515–7520

    Article  CAS  Google Scholar 

  • Sardar R, Heap TB, Shumaker-Parry JS (2007) Solid phase synthesis of gold nanoparticle dimers using and asymmetric functionalization approach. J Am Chem Soc 129:5356–5357

    Article  CAS  Google Scholar 

  • Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006) Structural diversity in binary nanoparticles superlattices. Nature 439:55–59

    Article  CAS  Google Scholar 

  • Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  • Storhoff JJ, Mirkin CA (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862

    Article  CAS  Google Scholar 

  • Sung K-M, Mosley DW, Peelle BR, Zhang S, Jacobson JM (2004) Synthesis of monofunctionalized gold nanoparticles by Fmoc solid-phase reactions. J Am Chem Soc 126:5064–5065

    Article  CAS  Google Scholar 

  • Tang Z, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297:237–240

    Article  CAS  Google Scholar 

  • Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314:274–278

    Article  CAS  Google Scholar 

  • Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  CAS  Google Scholar 

  • Thomas KG, Barazzouk S, Ipe BI, Joseph STS, Kamat PV (2004) Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J Phys Chem B 108:13066–13068

    Article  CAS  Google Scholar 

  • Wang Z, Lee J, Cossins AR, Brust M (2005) Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Anal Chem 77:5770–5774

    Article  CAS  Google Scholar 

  • Wei Y, Bishop KJM, Kim J, Soh S, Grzybowski BA (2009) Making use of bond strength and steric hindrance in nanoscale “synthesis”. Angew Chem Int Ed 48:9477–9480

    Article  CAS  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  Google Scholar 

  • Xu X, Rosi NL, Wang Y, Huo F, Mirkin CA (2006) Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc 128:9286–9287

    Article  CAS  Google Scholar 

  • Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    Article  CAS  Google Scholar 

  • Zhang H, Wang D (2008) Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion. Angew Chem Int Ed 47:3984–3987

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Science Council of the Republic of China for the financial support (NSC97-2113-M-194-009-MY2) and The Instrumental Centers in National Chung Cheng University for the TEM, SEM, EDX, and electron diffraction analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Ming Chi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2011_242_MOESM1_ESM.doc

Characterization data such as DLS, XRPD, IR, and NMR for characterization of Au nanoclusters, naobelts and nanosheets are available free of charge. (DOC 2074 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvam, T., Chiang, CM. & Chi, KM. Organic-phase synthesis of self-assembled gold nanosheets. J Nanopart Res 13, 3275–3286 (2011). https://doi.org/10.1007/s11051-011-0242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0242-1

Keywords

Navigation