Skip to main content
Log in

Thermostable photocatalytically active TiO2 anatase nanoparticles

  • Discussion
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Anatase is the low-temperature (300–550 °C) crystalline polymorph of TiO2 and it transforms to rutile upon heating. For applications utilizing the photocatalytic properties of nanoscale anatase at elevated temperatures (over 600 °C) the issue of phase stabilisation is of major interest. In this study, binary TiO2/SiO2 particles were synthesized by a flame aerosol process with TiCl4 and SiCl4 as precursors. The theoretical Si/Ti ratio was varied in the range of 0.7–1.3 mol/mol. The synthesized TiO2/SiO2 samples were heat treated at 900 and 1,000 °C for 3 h to determine the thermostability of anatase. Pyrogenic TiO2 P25 (from Evonik/Degussa, Germany) widely applied as photocatalyst was used as non-thermostabilized reference material for comparison of photocatalytic activity of powders. Both the non-calcinated and calcinated powders were characterized by means of XRD, TEM and BET. Photocatalytic activity was examined with dichloroacetic acid (DCA) chosen as a model compound. It was found that SiO2 stabilized the material retarding the collapse of catalyst surface area during calcination. The weighted anatase content of 85% remains completely unchanged even after calcination at 1,000 °C. The presence of SiO2 layer/bridge as spacer between TiO2 particles freezes the grain growth: the average crystallite size increased negligibly from 17 to 18 nm even during the calcination at 1,000 °C. Due to the stabilizing effect of SiO2 the titania nanoparticles calcinated at 900 and 1,000 °C show significant photocatalytic activity. Furthermore, the increase in photocatalytic activity with calcination temperature indicates that the titania surface becomes more accessible either due to intensified cracking of the SiO2 layer or due to enhanced transport of SiO2 into the necks thus releasing additional titania surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Albonetti S, Blasioli S, Bugani M, Lehaut-Burnouf C, Augustine S, Roncari R, Trifirò F (2003) Effect of silica additive on the thermal stability of catalysts for NO x abatement. Environ Chem Lett 1:197–200

    Article  CAS  Google Scholar 

  • Bahnemann DW, Bockelmann D, Goslich R (1991) Mechanistic studies of water detoxification in illuminated TiO2 suspensions. Solar Energy Mater 24:564–583

    Article  CAS  Google Scholar 

  • Bahnemann DW, Kholuiskaya SN, Dillert R, Kulak AI, Kokorin AI (2002) Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles. Appl Catal B 36:161–169

    Article  CAS  Google Scholar 

  • Barakat MA, Hayes G, Ismat-Shah S (2005) Effect of cobalt doping on the phase transformation of TiO2 nano-particles. J Nanosci Nanotechnol 5:759–765

    Article  CAS  Google Scholar 

  • Cheng P, Zheng M-P, Huang Q, Jin Y-P, Gu M-Y (2003) Enhanced photoactivity of silica-titania binary oxides prepared by sol–gel method. J Mater Sci Lett 22:1165–1168

    Article  CAS  Google Scholar 

  • Ehrman SH, Friedlander SK (1999) Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame. J Mater Res 14:4551–4561

    Article  CAS  Google Scholar 

  • Enriquez R, Pichat P (2006) Different net effect of TiO2 sintering temperature on the photocatalytic removal rates of 4-chlorophenol, 4-chlorobenzoic acid and dichloroacetic acid in water. J Environ Sci Health A 41:955–966

    CAS  Google Scholar 

  • Gennari FC, Pasquevich DM (1999) Enhancing effect of iron chlorides on the anatase–rutile transition in titanium dioxide. J Am Ceram Soc 82(7):1915–1921

    Article  CAS  Google Scholar 

  • Ghosh SK, Vasudevan AK, Prabhakar Rao P, Warrier KGK (2001) Influence of different additives on anatase–rutile transformation in titania system. Br Ceram Trans 100(4):151–154

    Article  CAS  Google Scholar 

  • Gilbert B, Zhang H, Huang F, Finnegan MP, Waychunas GA, Banfield JF (2003) Special phase transformation and crystal growth pathways observed in nanoparticles. Geochem Trans 4:20–27

    Article  Google Scholar 

  • Gribb AA, Banfield JF (1997) Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am Miner 82:717–728

    CAS  Google Scholar 

  • Hung C-H, Katz JL (1992) Formation of mixed oxide powders in flames: Part I. TiO2–SiO2. J Mater Res 7:1861–1875

    Article  CAS  Google Scholar 

  • Iwamoto S, Tanakulrungsank W, Inoe M, Kagawa K, Praserthdam P (2000) Synthesis of large-surface area silica-modified titania ultrafine particles by the glycothermal method. J Mater Sci Lett 19:1439–1443

    Article  CAS  Google Scholar 

  • Katzer M, Weber AP, Kasper G (2001) The effects of electrical fields on growth of titania particles formed in a CH4–O2 diffusion flame. J Aerosol Sci 32:1045–1067

    Article  CAS  Google Scholar 

  • Lee GW, Choi SM (2008) Thermal stability of heat-treated flame-synthesized anatase TiO2 nanoparticles. J Mater Sci 43:715–720

    Article  CAS  Google Scholar 

  • Lee D-W, Park S-J, Ihm S-K, Lee K-H (2007) One-pot synthesis of Pt-nanoparticle-embedded mesoporous titania/silica and its remarkable thermal stability. J Phys Chem C 111:7634–7638

    Article  CAS  Google Scholar 

  • Lindner M, Theurich J, Bahnemann DW (1997) Photocatalytic degradation of organic compounds: accelerating the process efficiency. Water Sci Technol 35:70–86

    Google Scholar 

  • Moiseev A (2005) Beitrag zur photokatalytischen Abwasserreinigung: Katalysator- und Reaktionsoptimierung, Dissertation TU Clausthal, ISBN 3-89720-809-1

  • Okada K, Yamamoto N, Kameshima Y, Yasumori A (2001) Effect of silica additive on the anatase-to-rutile phase transition. J Am Ceram Soc 84:1591–1596

    Article  CAS  Google Scholar 

  • Okada K, Katsumata K, Kameshima Y, Yasumori A (2002) Effect of Germanium oxide (GeO2) additive on the anatase-to-rutile phase transition. J Am Ceram Soc 85(8):2078–2082

    Article  CAS  Google Scholar 

  • Porter JF, Li Y-G, Chan CK (1999) The effect of calcinations on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. J Mater Sci 34:1523–1531

    Article  CAS  Google Scholar 

  • Reidy DJ, Holmes JD, Morris MA (2006a) Preparation of a highly thermally stable titania anatase phase by addition of mixed zirconia and silica dopants. Ceram Int 32:235–239

    Article  CAS  Google Scholar 

  • Reidy DJ, Holmes JD, Morris MA (2006b) The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J Eur Ceram Soc 26:1527–1534

    Article  CAS  Google Scholar 

  • Riyas S, Mohan Das PN (2004) Effect of Fe2O3 and Cr2O3 on anatase–rutile transformation in TiO2. Br Ceram Trans 103:23–28

    Article  CAS  Google Scholar 

  • Rodriguez-Talavera R, Vargas S, Arroyo-Murillo R, Montiel-Campos R, Haro-Poniatowski E (1997) Modi-fication of the phase transition temperatures in titania doped with various cations. J Mater Res 12:439–443

    Article  CAS  Google Scholar 

  • Schumacher K, Batz-Sohn C, Hasenzahl S (2004) Titanium dioxide coated with silicon dioxide, Patent No. Wo2004056927

  • Song H, Jiang H, Liu X, Meng G (2006) Efficient degradation of organic pollutant with WO x TiO2 under visible irradiation. J Photochem Photobiol A 181:421–428

    Article  CAS  Google Scholar 

  • Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762

    Article  CAS  Google Scholar 

  • Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108

    Article  CAS  Google Scholar 

  • Vemury S, Pratsinis SE (1995) Dopants in flame synthesis of titania. J Am Ceram Soc 78:2984–2992

    Article  CAS  Google Scholar 

  • Weibel A, Bouchet R, Bouvier P, Knauth P (2006) Hot comparison of nanocrystalline TiO2 (anatase) ceramics. Mechanisms of densification: grain size and doping effects. Acta Mater 54:3575–3583

    Article  CAS  Google Scholar 

  • Zhang R-B (2005) Photodegradation of toluene using silica-embedded titania. J Non-Cryst Solids 351:2129–2132

    Article  CAS  Google Scholar 

  • Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Deutsche Forschungsgesellschaft (DFG) provided the financial support under Grant No. DFG-We 2331/10-1 and DFG-De 598/16-1. We would like to thank Dr. M. Krichevskaya from Tallinn University of Technology, Estonia for her helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, F., Moiseev, A., Deubener, J. et al. Thermostable photocatalytically active TiO2 anatase nanoparticles. J Nanopart Res 13, 1325–1334 (2011). https://doi.org/10.1007/s11051-010-0211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0211-0

Keywords

Navigation