Skip to main content
Log in

Thermal stability of heat-treated flame-synthesized anatase TiO2 nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, TiO2 nanoparticles were synthesized by using O2-enriched coflow, hydrogen, diffusion flames. We investigated the thermal stability of the flame-synthesized TiO2 nanoparticles by examining the crystalline structures of the nanoparticles and by analyzing the photocatalytic degradations of methylene blue solutions. Also, the results were compared with those of commercial P-25 nanoparticles. The maximum centerline temperature of the flame was measured to be 1,743 °C. Under this synthesis condition, TiO2 nanoparticles, which were spherical with diameters approximately ranging from 30 to 60 nm, were synthesized. From the XRD analyses, about 96 wt.% of the synthesized nanoparticles were anatase-phase. After the heat-treatment at 800 °C for 30 min, the synthesized TiO2 nanoparticles showed no significant changes of their shapes and crystalline phases. On the other hand, most of the commercial particles sintered with each other and changed to the rutile-phase. Whereas the photocatalytic ability of heat-treated commercial particles deteriorated, that of the flame-synthesized particles improved. On the basis of the improved result of photocatalytic degradation of methylene blue by using the heat-treated flame-synthesized nanoparticles, it is believed that the flame-synthesized TiO2 nanoparticles have higher thermal stability at 800 °C than the commercial particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Znaidi L, Seraphimova R, Bocquet JF, Colbeau-Justin C, Pommier C (2001) Mater Res Bull 36:811

    Article  CAS  Google Scholar 

  2. Naskar S, Pillay SA, Chanda M (1998) J Photochem Photobiol A: Chem 113:257

    Article  CAS  Google Scholar 

  3. Larsson P-O, Berggren H, Andersson A, Augustsson O (1997) Catal Today 35:137

    Article  CAS  Google Scholar 

  4. Lee TG, Hyun JE (2006) Chemosphere 62:26

    Article  CAS  Google Scholar 

  5. Park J-K, Ahn J-P, Kim G (1999) Metals Mater 5:129

    Article  CAS  Google Scholar 

  6. Okada K, Yamamoto N, Kameshima Y, Yasumori A, MacKenzie KJD (2001) J Am Ceram Soc 84:1591

    Article  CAS  Google Scholar 

  7. Xia B, Huang H, Xie Y (2001) Mater Sci Eng B 84:1591

    Google Scholar 

  8. Formenti M, Juillet F, Meriaudeau P, Teichner SJ, Vergnon P (1972) J Colloid Int Sci 39:79

    Article  CAS  Google Scholar 

  9. Fotou GP, Vemury S, Pratsinis SE (1994) Chem Eng Sci 49:4939

    Article  CAS  Google Scholar 

  10. Vemury S, Pratsinis SE (1995) J Am Ceram Soc 78:2984

    Article  CAS  Google Scholar 

  11. Jang HD, Kim S-K, Kim S-J (2001) J Nanoparticle Res 3:141

    Article  CAS  Google Scholar 

  12. Katzer M, Weber AP, Kasper G (2001) J Aerosol Sci 32:1045

    Article  CAS  Google Scholar 

  13. Yang G, Zhuang H, Biswas P (1996) Nanostruct Mater 7:675

    Article  CAS  Google Scholar 

  14. Lee GW, Choi SM (2007) Mater Sci Forum 544-545:39

    Article  CAS  Google Scholar 

  15. Yeh CL, Yeh SH, Ma HK (2004) Powder Tech 145:1

    Article  CAS  Google Scholar 

  16. Lee DG, Choi M (2002) J Aerosol Sci 33:1

    Article  CAS  Google Scholar 

  17. Nagaveni K, Sivalingam G, Hedge MS, Madras G (2004) Environ Sci Technol 38:1600

    Article  CAS  Google Scholar 

  18. Nagaveni K, Sivalingam G, Hedge MS, Madras G (2004) Appl Catal B: Environ 48:83

    Article  CAS  Google Scholar 

  19. Akurati KK, Vital A, Fortunata G, Hany R, Nueesch F, Graule T (2007) Solid State Sci 9:247

    Article  CAS  Google Scholar 

  20. Spurr RA, Myers H (1957) Anal Chem 29:760

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-003-D00043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyo Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, G.W., Choi, S.M. Thermal stability of heat-treated flame-synthesized anatase TiO2 nanoparticles. J Mater Sci 43, 715–720 (2008). https://doi.org/10.1007/s10853-007-2200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2200-y

Keywords

Navigation