Skip to main content
Log in

A new green synthesis method of CuInS2 and CuInSe2 nanoparticles and their integration into thin films

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A new preparation method for CuInS2 and CuInSe2 nanoparticles synthesis is described without using any organic solvent. Heating Cu, In, and S/Se precursors dissolved in water for 30 min in a microwave oven in the presence of mercapto-acetic acid leads to monodispersed chalcopyrite nanoparticles. No precipitation of these nanoparticles is observed after several months at room temperature. These new materials have been thoroughly characterized to confirm their compositions, sizes, and structure without any filtration. Transmission electron microscopy (TEM) confirmed particle sizes below 5 nm. Energy dispersive X-ray analysis (EDXA) confirmed the chemical composition of these samples. X-ray diffraction (XRD) showed a chalcopyrite-type structure with crystallite size of about 2 nm. No difference has been observed between batch and continuous synthesis processes. Cu x InS2 and Cu x InSe2 nanoparticles, with x < 1, have been also synthesized and identified. Simulation using a commercial software confirmed the difference between copper poor (Cu x InS2) and copper rich (CuInS2) chalcopyrite structures. Conventional spray deposition techniques have been used to form relatively thin films on solid substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn SJ, Kim KH, Chun YG, Yoon KH (2007) Nucleation and growth of Cu(In, Ga)Se2 nanoparticles in low temperature colloidal process. Thin Solid Films 515:4036–4040

    Article  CAS  ADS  Google Scholar 

  • Akaki A, Komaki H, Yokoyama H, Yoshino K, Maeda K, Ikari T (2003) Structural and optical characterization of Sb-doped CuInS2 thin films grown by vacuum evaporation method. J Phys Chem Solids 64:1863–1867

    Article  CAS  ADS  Google Scholar 

  • Arici E, Hope H, Schaffler F, Meissner D, Malik MA, Sariciftci NS (2004) Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. Appl Phys A 79:59–64

    Article  CAS  ADS  Google Scholar 

  • Azad-Malik M, O’Brien P, Revaprasadu N (1999) A novel route for the preparation of CuSe and CuInSe2 nanoparticles. Adv Mater 11:1441–1444

    Article  Google Scholar 

  • Basol BM (2000) Low cost techniques for the preparation of Cu(In, Ga)(Se, S)2 absorber layers. Thin Solid Films 361–362:514–519

    Article  Google Scholar 

  • Bensebaa F, Patrito N, Le Page Y, L’Ecuyer P, Wang D (2004) Tunable platinum–ruthenium nanoparticle properties using microwave synthesis. J Mater Chem 14:3378–3384

    Article  CAS  Google Scholar 

  • Bensebaa F, Farah A, Wang D, Bock C, Du X, Kung J, Le Page Y (2005) Microwave synthesis of polymer-embedded Pt–Ru catalyst for direct methanol fuel cell. J Phys Chem B 109:15339–15344

    Article  CAS  PubMed  Google Scholar 

  • Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF (2004) Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor. J Phys Chem B 108:12429–12435

    Article  CAS  Google Scholar 

  • Chun YG, Kim KH, Yoon KH (2005) Synthesis of CuInGaSe2 nanoparticles by solvothermal route. Thin Solid Film 480–481:46–49

    Article  Google Scholar 

  • Czekelius C, Hilgendorf M, Spanhel L, Bedja I, Lerch M, Muller G, Bloeck U, Su DS, Gersig M (1999) A simple colloidal route to nanocrystalline ZnO/CuInS2 bilayers. Adv Mater 11:643–646

    Article  CAS  Google Scholar 

  • Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  CAS  PubMed  Google Scholar 

  • Debye P (1915) The scattering of X-rays. Ann Phys (Leipzig) 46:809–823

    CAS  Google Scholar 

  • Dhere NG (2006) Present status and future prospects of CIGSS thin film solar cells. Sol Energy Mater Sol Cells 90:2181–2190

    Article  CAS  Google Scholar 

  • Dutta DP, Sharma G (2006) A facile route to the synthesis of CuInS2 nanoparticles. Mater Lett 60:2395–2398

    Article  CAS  Google Scholar 

  • Eberspacher C, Frederic C, Pauls K, Serra J (2001) Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques. Thin Solid Films 387:18–22

    Article  CAS  ADS  Google Scholar 

  • Firth AV, Tao Y, Wang D, Ding J, Bensebaa F (2005) Microwave assisted synthesis of CdSe nanocrystals for straightforward integration into composite photovoltaic devices. J Mater Chem 15:4367–4372

    Article  CAS  Google Scholar 

  • Gardner JS, Shurdha E, Wang C, Lau L, Rodriguez RG, Pak JJ (2008) Rapid synthesis and size control of CuInS2 semi-conductor nanoparticles using microwave irradiation. J Nanopart Res 10:633–641

    Article  CAS  Google Scholar 

  • Grisaru H, Palchik O, Gedanken A, Slifkin MA, Weiss AM, Palchik V (2003) Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles. Inorg Chem 42:7148–7155

    Article  CAS  PubMed  Google Scholar 

  • Gurin VS (1998) Nanoparticles of ternary semiconductors in colloids: low-temperature formation and quantum size effects. Colloids Sci 142:35–40

    Article  CAS  Google Scholar 

  • Kaelin M, Rudmann D, Kurdesau F, Meyer T, Zogg H, Tiwari AN (2003) CIS and CIGS layers from selenized nanoparticle precursors. Thin Solid Films 431–432:58–62

    Article  Google Scholar 

  • Kaelin M, Rudmann D, Kurdesau F, Meyer T, Zogg H, Tiwari AN (2005) Low-cost CIGS solar cells by paste coating and selenization. Thin Solid Films 480–481:486–490

    Article  Google Scholar 

  • Kapur VK, Bansal A, Le P, Asensio OL (2003) Non-vacuum processing of CuIn1−x Ga x Se2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films 431–432:53–57

    Article  Google Scholar 

  • Kazmerski LL (2006) Solar photovoltaics R&D at the tipping point: a 2005 technology overview. J Electron Spectrosc Relat Phenom 150:105–135

    Article  CAS  Google Scholar 

  • Klaer J, Luck I, Boden A, Klenk R, Gavilanes-Perez I, Scheer R (2003) Mini-modules from a CuInS2 baseline process. Thin Solid Films 431–432:534–537

    Article  Google Scholar 

  • Klenk R, Klaer J, Scheer R, Lux-Steiner MC, Luck I, Meyer N, Ruhle U (2005) Solar cells based on CuInS2—an overview. Thin Solid Films 480–481:509–514

    Article  Google Scholar 

  • Le Page Y, Rodgers JR (2005) Quantum software interfaced with crystal-structure databases: tools, results and perspectives. J Appl Cryst 38:697–705

    Article  CAS  Google Scholar 

  • Nairn JJ, Shapiro PJ, Twamley B, Pounds T, von Wandruszka R, Fletcher TR, Williams M, Wang C, Norton MG (2006) Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors. Nano Lett 6:1218–1223

    Article  CAS  PubMed  ADS  Google Scholar 

  • Nakamura H, Kato W, Uehara M, Nose K, Omata T, Otsuka-Yao-Matsuo S, Miyazaki M, Maeda H (2006) Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system. Chem Mater 18:3330–3335

    Article  CAS  Google Scholar 

  • Raffaelle RP, Castro SL, Hepp AF, Bailey SG (2002) Quantum dot solar cells. Prog Photovolt Res Appl 10:433–439

    Article  CAS  Google Scholar 

  • Repins I, Contreras MJ, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) Accelerated publication 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovolt Res Appl 16:235–239

    Article  CAS  Google Scholar 

  • Roh SJ, Mane RS, Pathan HM, Joo OS, Han SH (2005) Rapid growth of nanocrystalline CuInS2 thin films in alkaline medium at room temperature. Appl Surf Sci 252:1981–1987

    Article  CAS  ADS  Google Scholar 

  • Schulz DL, Curtis CJ, Flitton FA, Weisner H, Keane J, Matson RJ, Jones MJ, Parilla PA, Noufi R, Ginley DS (1998) Cu-In-Ga-Se nanoparticle colloids as spray deposition precursors for Cu(In, Ga)Se2 solar cell materials. J Electron Mater 27:433–437

    Article  CAS  ADS  Google Scholar 

  • Shay JL, Wagner S, Kasper HM (1975) Efficient CuInSe2/CdS solar cells. Appl Phys Lett 27:89–90

    Article  CAS  ADS  Google Scholar 

  • Sweeney SF, Woehrle GH, Hutchison JE (2006) Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc 128:3190–3197

    Article  CAS  PubMed  Google Scholar 

  • Takagi M (1954) Electron diffraction study of liquid–solid transition of thin metal films. J Phys Soc Jpn 9:359–363

    Article  ADS  Google Scholar 

  • Wei Q, Mu X (2005) Synthesis of CuInS2 nanocubes by a wet chemical process. J Dispers Sci Technol 26:555–558

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bensebaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bensebaa, F., Durand, C., Aouadou, A. et al. A new green synthesis method of CuInS2 and CuInSe2 nanoparticles and their integration into thin films. J Nanopart Res 12, 1897–1903 (2010). https://doi.org/10.1007/s11051-009-9752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9752-5

Keywords

Navigation