ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving

  • R. Allabashi
  • W. Stach
  • A. de la Escosura-Muñiz
  • L. Liste-Calleja
  • A. Merkoçi
Research Paper


A direct and simple inductively coupled plasma mass spectroscopy (ICP-MS) method for the determination of gold nanoparticles (AuNP) with different particle sizes ranging from 5 to 20 nm and suspended in aqueous solutions is described. The results show no significant difference compared to the determination of the same AuNPs after digestion, as claimed by the literature. The obtained limit of quantification of the method is 0.15 μg/L Au(III) that corresponds to 4.40 × 109 AuNP/L, considering spherical AuNPs 15 nm sized. Spike recovery experiments have shown that the sample matrix is a significant factor influencing the accuracy of the measurement. Spike recoveries from 93% to 95% are found for AuNP samples prepared in trisodium citrate, while for deionized H2O a spike recovery of around 80% was obtained. The sample preparation mode along with the ICP-MS parameters have been optimized and found to be crucial so as to achieve the required accuracy for the direct quantification of AuNP suspensions. The effect of the nanoparticle size upon the ICP-MS signal also was studied, and only significant differences due to the chemical environment and not to the AuNPs size were found.


ICP-MS Gold nanoparticles Direct detection Colloids Environment 



MEC (Madrid) for the projects MAT2008-03079/NAN, CSD2006-00012 “NANOBIOMED” (Consolider-Ingenio 2010) and Juan de la Cierva scholarship (A. de la Escosura) is acknowledged.


  1. Alivisatos AP, Peng X, Wilson TE, Loweth CL, Bruchez MP, Schultz PG (1996) Organization of nanocrystal molecules using DNA. Nature 382:609–611. doi: 10.1038/382609a0 CrossRefPubMedADSGoogle Scholar
  2. Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoçi A (2007) Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem 79:5232–5240. doi: 10.1021/ac070357m CrossRefPubMedGoogle Scholar
  3. Castañeda MT, Merkoçi A, Pumera M, Alegret S (2007) Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosens Bioelectron 22:1961–1967. doi: 10.1016/j.bios.2006.08.031 CrossRefPubMedGoogle Scholar
  4. Chen H, Wang Y, Wang Y, Dong S, Wang E (2006) One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer (Guildf) 47:763–766. doi: 10.1016/j.polymer.2005.11.034 CrossRefGoogle Scholar
  5. Collins JA, Xirouchaki C, Palmer RE, Heath JK, Jones CH (2004) Clusters for biology: immobilization of proteins by size-selected metal clusters. Appl Surf Sci 226:197–208. doi: 10.1016/j.apsusc.2003.11.059 CrossRefADSGoogle Scholar
  6. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL et al (2002) Changes in the electronic properties of a molecule when it is wired into a circuit. J Phys Chem B 106:8609–8614. doi: 10.1021/jp0206065 CrossRefGoogle Scholar
  7. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandle AB, Rao M et al (2001a) Pepsin–gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17:1674–1679. doi: 10.1021/la001164w CrossRefGoogle Scholar
  8. Gole A, Dash C, Soman C, Sainkar SR, Rao M, Sastry M (2001b) On the preparation, characterization, and enzymatic activity of fungal protease–gold colloid bioconjugates. Bioconjug Chem 12:684–690. doi: 10.1021/bc0001241 CrossRefPubMedGoogle Scholar
  9. Gole A, Vyas S, Phadtare S, Lachke A, Sastry M (2002) Studies on the formation of bioconjugates of Endoglucanase with colloidal gold. Colloids Surf B Biointerfaces 25:129–138. doi: 10.1016/S0927-7765(01)00301-0 CrossRefGoogle Scholar
  10. González-García MB, Costa-García A (1995) Adsorptive stripping voltammetric behaviour of colloidal gold and immunogold on carbon paste electrode. Bioelectrochem Bioenerg 38:389–395. doi: 10.1016/0302-4598(95)01813-T CrossRefGoogle Scholar
  11. Helfrich A, Brüchert W, Bettmer J (2006) Size characterisation of Au nanoparticles by ICP-MS coupling techniques. J Anal At Spectrom 21:431–434. doi: 10.1039/b511705d CrossRefGoogle Scholar
  12. Hernandez-Santos D, González-Garcia MB, Costa-Garcia A (2002) Metal-nanoparticles based electroanalysis. Electroanalysis 14:1225–1235. doi:10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-ZCrossRefGoogle Scholar
  13. Jiang P, Xie S, Pang S, Gao H (2002) The combining analysis of height and phase images in tapping-mode atomic force microscopy: a new route for the characterization of thiol-coated gold nanoparticle film on solid substrate. Appl Surf Sci 191:240–246Google Scholar
  14. Kanaras AG, Wang Z, Bates AD, Cosstick R, Brust M (2003) Towards multistep nanostructure synthesis: programmed enzymatic self-assembly of DNA/gold systems. Angew Chem 42:191–194. doi: 10.1002/anie.200390075 CrossRefGoogle Scholar
  15. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44. doi: 10.1002/elan.200302930 CrossRefGoogle Scholar
  16. Keating CD, Kovaleski KM, Natan MJ (1998) Protein:colloid conjugates for surface enhanced raman scattering: stability and control of protein orientation. J Phys Chem B 102:9404–9413. doi: 10.1021/jp982723z CrossRefGoogle Scholar
  17. Kumar A, Pattarkine M, Bhadbhade M, Mandale AB, Ganesh KN, Datar SS et al (2001) Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates. Adv Mater 13:341–344. doi:10.1002/1521-4095(200103)13:5<341::AID-ADMA341>3.0.CO;2-XCrossRefGoogle Scholar
  18. Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46:3128–3136. doi: 10.1021/ie060672j CrossRefGoogle Scholar
  19. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217. doi: 10.1021/jp984796o CrossRefGoogle Scholar
  20. Mandal S, Selvakannan PR, Phadtare S, Pasricha R, Sastry M (2002) Synthesis of stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. Proc Indiana Acad Sci 114:513–520. doi: 10.1007/BF02704195 CrossRefGoogle Scholar
  21. Merkoçi A, Aldavert M, Marin S, Alegret S (2005a) New materials for electrochemical sensing V: nanoparticles for DNA labeling. Trends Analyt Chem 24:341–349. doi: 10.1016/j.trac.2005.03.019 CrossRefGoogle Scholar
  22. Merkoçi A, Aldavert M, Tarrasón G, Eritja R, Alegret S (2005b) Toward an ICPMS-linked DNA assay based on gold nanoparticles immunoconnected through peptide sequences. Anal Chem 77:6500–6503. doi: 10.1021/ac050539l CrossRefPubMedGoogle Scholar
  23. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675. doi: 10.1021/ja982721s CrossRefGoogle Scholar
  24. Niemeyer CM, Ceyhan B (2001) DNA-directed functionalization of colloidal gold with proteins. Angew Chem 40:3685–3688. doi:10.1002/1521-3773(20011001)40:19<3685::AID-ANIE3685>3.0.CO;2-ECrossRefGoogle Scholar
  25. Park S, Taton TA, Mirkin CA (2001) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506ADSGoogle Scholar
  26. Patolsky F, Gabriel T, Willner I (1999) Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. J Electroanal Chem 479:69–73. doi: 10.1016/S0022-0728(99)00426-X CrossRefGoogle Scholar
  27. Pumera M, Aldavert M, Mills C, Merkoçi A, Alegret S (2005a) Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochim Acta 50:3702–3707. doi: 10.1016/j.electacta.2005.01.035 CrossRefGoogle Scholar
  28. Pumera M, Castañeda MT, Pividori MI, Eritja R, Merkoçi A, Alegret S (2005b) Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer. Langmuir 21:9625–9629. doi: 10.1021/la051917k CrossRefPubMedGoogle Scholar
  29. Selvakannan PR, Mandal S, Phadtare S, Pasricha R, Sastry M (2003) Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 19:3545–3549. doi: 10.1021/la026906v CrossRefGoogle Scholar
  30. Selvakannan PR, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya S et al (2004) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci 269:97–106. doi: 10.1016/S0021-9797(03)00616-7 CrossRefPubMedGoogle Scholar
  31. Turkevich J, Stevenson P, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi: 10.1039/df9511100055 CrossRefGoogle Scholar
  32. Wang J, Xu D, Polsky R (2002) Magnetically-induced solid-state electrochemical detection of DNA hybridization. J Am Chem Soc 124:4208–4209. doi: 10.1021/ja0255709 CrossRefPubMedGoogle Scholar
  33. Zhang H, Hussain I, Brust M, Cooper AI (2004) Emulsion-templated gold beads using gold nanoparticles as building blocks. Adv Mater 16:27–30. doi: 10.1002/adma.200306153 CrossRefGoogle Scholar
  34. Zhao J, O’Daly JP, Henkens RW, Stonehuerner J, Crumblis AL (1996) A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications. Biosens Bioelectron 11:493–502. doi: 10.1016/0956-5663(96)86786-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • R. Allabashi
    • 1
  • W. Stach
    • 1
  • A. de la Escosura-Muñiz
    • 2
  • L. Liste-Calleja
    • 2
  • A. Merkoçi
    • 2
    • 3
  1. 1.Department Water, Atmosphere, Environment, Institute of Sanitary Engineering and Water Pollution ControlUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Nanobioelectronics & Biosensors Group, Catalan Institute of NanotechnologyBarcelonaSpain
  3. 3.ICREABarcelonaSpain

Personalised recommendations