Skip to main content
Log in

Investigation of nanostructured Fe3O4 polypyrrole core-shell composites by X-ray absorbtion spectroscopy and X-ray diffraction using synchrotron radiation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this article, we focus on the structural peculiarities of nanosized Fe3O4 in the core-shell nanocomposites obtained by polymerization of conducting polypyrrole shell around Fe3O4 nanoparticles. The local structure of Fe atoms was determined from the Extended X-ray Absorption Fine Structure analysis using our own package computer programs. An X-ray diffraction method that is capable to determine average particle size, microstrains, as the particle size distribution of Fe3O4 nanoparticles is presented. The method is based on the Fourier analysis of a single X-ray diffraction profile using a new fitting method based on the generalized Fermi function facilities. The crystallites size obtained by X-ray diffraction spectra analysis was estimated between 3.2 and 10.3 nm. Significant changes in the first and the second Fe coordination shell in comparison with standard bulk were observed. The global and local structure of the nanosized Fe3O4 are correlated with the synthesis conditions of the core-shell polypyrrole nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

k :

Wave vector

A j (k):

Amplitude function

R i :

The radial distance

N i :

Number of atoms

F i (k,r,π):

Backscattering amplitude

s :

Scattering parameter

WF(k):

Apodization windows

h :

Experimental X-ray line profile

g :

Instrumental X-ray line profile

f :

True sample function

H(L):

Fourier transform of h profile

G(L):

Fourier transform of g profile

F(L):

Fourier transform of true sample function

F (s)(L):

Fourier transform contribution about crystallite size and stocking fault probability

\( F^{(\epsilon)} (L) \) :

Fourier transform contribution about microstrain of the lattice

D eff(hkl):

Effective crystallite size

\( \langle \epsilon^{2} \rangle_{hkl} \) :

Microstrain of the lattice

A,a,b,c :

Parameters of generalized Fermi function

ΔN :

Uncertainties of atom numbers

ΔR :

Uncertainties of coordination shell

ΔE 0 :

Uncertainties of K edge position

FWHM :

Full width at half maximum of true sample function

D Sch :

Crystallite size from Scherrer relation

μ:

Absorption coefficient

χ:

EXAFS function

σ:

Root means squares

λ:

Mean free path function for inelastic scattering

Φ:

Radial structure function

δh :

Integral width of experimental profile

δf :

Integral width of true sample function

j :

Coordination shell

References

  • Abramowich M, Stegun A (1968) Handbook of mathematical functions. Dover, New York, pp 890–891

    Google Scholar 

  • Aldea N, Indrea E (1990a) Fourier analysis of EXAFS and XANES data: a self-contained Fortran program-package: the third version. Comput Phys Commun 60:145–154. doi:10.1016/0010-4655(90)90083-D

    Article  ADS  CAS  Google Scholar 

  • Aldea N, Indrea E (1990b) XRLINE, a program to evaluate the crystallite size of supported metal catalysts by single X-ray profile Fourier analysis. Comput Phys Commun 60:155–163. doi:10.1016/0010-4655(90)90084-E

    Article  ADS  Google Scholar 

  • Aldea N, Zapotinschi R, Cosma C (1995) Crystallite size determination for supported metal catalysts by single X-ray profile Fourier analysis. Fresenius J Anal Chem 355:367–369

    Google Scholar 

  • Aldea N, Tiusan C, Zapotinschi R (1996) A new approach used to evaluation the crystallite size of supported metal catalysts by single X-ray profile Fourier transform implemented on maple V. In: Borcherds P, Bubak M, Maksymowicz A (ed) Proceedings of the 8th joint EPS-APS international conference on physics computing, Krakow, pp 391–394

  • Aldea N, Gluhoi A, Marginean P, Cosma C, Yaning X (2000) Extended X-ray absorption fine structure and X-ray diffraction studies on supported nickel catalysts. Spectrochim Acta B 55:997–1008. doi:10.1016/S0584-8547(00)00211-1

    Article  ADS  Google Scholar 

  • Aldea N, Barz B, Silipas TD, Aldea F, Zhonghua Wu (2005) Mathematical study of metal nanoparticle size determination by single X-ray line profile analysis. J Optoelectron Adv Mater 7(6):3093–3100

    CAS  Google Scholar 

  • Asahi R, Taga Y, Manstadt W, Feeman AJ (2000) Electronic and optical properties of anatase TiO2. Phys Rev B 61(11):7459–7465. doi:10.1103/PhysRevB.61.7459

    Article  ADS  CAS  Google Scholar 

  • Chen LX, Liu T, Thurnauer MC, Csencsits R, Rajh T (2002) Fe2O3 Nanoparticle structures investigated by X-ray absorption near-edge structure, surface modification and model calculations. J Phys Chem B 106:8539–8546. doi:10.1021/jp025544x

    Article  CAS  Google Scholar 

  • Cramer SP, Hodgson KO (1979) X-ray absorption spectroscopy: a new structural method and its applications to bioinorganic chemistry. In: Lippard SJ (ed) Progress in inorganic chemistry, vol 25. Wiley, New York Chichester Brisbane Toronto, pp 1–39

    Chapter  Google Scholar 

  • Ellis PJ, Freeman HC (1995) XFIT—an interactive EXAFS analysis program. J Synchrotron Radiat 2:190–195. doi:10.1107/S0909049595006789

    Article  PubMed  CAS  Google Scholar 

  • Grunes LA (1983) Study of K edges of 3d transition metals in pure and oxide form by X-ray absorption spectroscopy. Phys Rev B 27(4):2111–2131. doi:10.1103/PhysRevB.27.2111

    Article  ADS  CAS  Google Scholar 

  • Lytle FW, Sayers DE, Stern EA (1989) Report of the international workshop on standards and criteria in X-ray absorption spectroscopy. Physica B 158:701–722. doi:10.1016/0921-4526(89)90351-7

    Article  Google Scholar 

  • McKale AG, Veal BW, Paulikas AP, Chan SK, Knapp GS (1988) Improved ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. J Am Chem Soc 110:3763–3768. doi:10.1021/ja00220a008

    Article  CAS  Google Scholar 

  • Modrow H, Bucher S, Rehr JJ, Ankudinov AL (2003) Calculation and interpretation of K-shell X-ray absorption near-edge structure of transition metal oxides. Phys Rev B 67:035123-1–035123-10

    Google Scholar 

  • Scott RA (1985) Measurement of metal-ligand distances by EXAFS. Methods Enzymol 117:414–459. doi:10.1016/S0076-6879(85)17025-4

    Article  CAS  Google Scholar 

  • Sinfelt JH, Via GH, Lytle FW (1984) Application of EXAFS in catalysis. Structure of bimetallic cluster catalysts. Catal Rev Sci Eng 26(1):81–140. doi:10.1080/01614948408078061

    Article  CAS  Google Scholar 

  • Stern EA (1988) Theory of EXAFS. In: Koningsberger DC, Prins R (eds) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York, pp 3–51

    Google Scholar 

  • Turcu R, Peter I, Pana O, Giurgiu L, Aldea N, Barz B, Grecu MN, Coldea A (2004) Structural and magnetic properties of polypyrrole nanocomposites. Mol Cryst Liq Cryst 417:235–243. doi:10.1080/15421400490478939

    Article  CAS  Google Scholar 

  • Turcu R, Al Darabont, Nan A, Aldea N, Macovei D, Bica D, Vekas L, Pana O, Soran ML, Koos AA, Biro LP (2006) New polypyrrole-multiwall carbon nanotubes hybrid materials. J Optoelectron Adv Mater 8(2):643–647

    CAS  Google Scholar 

  • Walker JS (1997) Fast Fourier transform, 3rd edn. CRC Boca Raton, New York London, Tokyo, pp 104–116

    Google Scholar 

  • Warren BE (1969) X-ray diffraction. Addison-Wesley Publishing Company, pp 264–291

  • Young RA, Gerdes RJ, Wilson AJC (1967) Propagation of some systematic errors in X-ray line profile analysis. Acta Crystallogr 22:155–162. doi:10.1107/S0365110X67000271

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to BSRF for the beam time, and to Drs. Hu Tiandou and Liu Tao for their technical assistance in EXAFS and XRD measurements. The author (N. A.) is also indebted to Professors Chen Hesheng, director of The Institute of High Energy Physics, and Fang Shouxian, director of The BEPC National Lab., respectively, for their hospitality during his stay. This work is the result of the Scientific Cooperation Agreement between our institutes. This work was supported by the research programmers of The Romanian Ministry of Education and Research (CEEX-MATNANTECH projects nr. 12/2005 and CNCSIS nr. 1484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae Aldea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldea, N., Turcu, R., Nan, A. et al. Investigation of nanostructured Fe3O4 polypyrrole core-shell composites by X-ray absorbtion spectroscopy and X-ray diffraction using synchrotron radiation. J Nanopart Res 11, 1429–1439 (2009). https://doi.org/10.1007/s11051-008-9536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9536-3

Keywords

Navigation