Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1429–1439 | Cite as

Investigation of nanostructured Fe3O4 polypyrrole core-shell composites by X-ray absorbtion spectroscopy and X-ray diffraction using synchrotron radiation

  • Nicolae Aldea
  • Rodica Turcu
  • Alexandrina Nan
  • Izabella Craciunescu
  • Ovidiu Pana
  • Xie Yaning
  • Zhonghua Wu
  • Doina Bica
  • Ladislau Vekas
  • Florica Matei
Research Paper

Abstract

In this article, we focus on the structural peculiarities of nanosized Fe3O4 in the core-shell nanocomposites obtained by polymerization of conducting polypyrrole shell around Fe3O4 nanoparticles. The local structure of Fe atoms was determined from the Extended X-ray Absorption Fine Structure analysis using our own package computer programs. An X-ray diffraction method that is capable to determine average particle size, microstrains, as the particle size distribution of Fe3O4 nanoparticles is presented. The method is based on the Fourier analysis of a single X-ray diffraction profile using a new fitting method based on the generalized Fermi function facilities. The crystallites size obtained by X-ray diffraction spectra analysis was estimated between 3.2 and 10.3 nm. Significant changes in the first and the second Fe coordination shell in comparison with standard bulk were observed. The global and local structure of the nanosized Fe3O4 are correlated with the synthesis conditions of the core-shell polypyrrole nanocomposites.

Keywords

X-ray spectroscopy Synchrotron radiation Local and global structure Magnetite 

Nomenclature

k

Wave vector

Aj(k)

Amplitude function

Ri

The radial distance

Ni

Number of atoms

Fi(k,r,π)

Backscattering amplitude

s

Scattering parameter

WF(k)

Apodization windows

h

Experimental X-ray line profile

g

Instrumental X-ray line profile

f

True sample function

H(L)

Fourier transform of h profile

G(L)

Fourier transform of g profile

F(L)

Fourier transform of true sample function

F(s)(L)

Fourier transform contribution about crystallite size and stocking fault probability

\( F^{(\epsilon)} (L) \)

Fourier transform contribution about microstrain of the lattice

Deff(hkl)

Effective crystallite size

\( \langle \epsilon^{2} \rangle_{hkl} \)

Microstrain of the lattice

A,a,b,c

Parameters of generalized Fermi function

ΔN

Uncertainties of atom numbers

ΔR

Uncertainties of coordination shell

ΔE0

Uncertainties of K edge position

FWHM

Full width at half maximum of true sample function

DSch

Crystallite size from Scherrer relation

Greek symbols

μ

Absorption coefficient

χ

EXAFS function

σ

Root means squares

λ

Mean free path function for inelastic scattering

Φ

Radial structure function

δh

Integral width of experimental profile

δf

Integral width of true sample function

Subscript

j

Coordination shell

References

  1. Abramowich M, Stegun A (1968) Handbook of mathematical functions. Dover, New York, pp 890–891Google Scholar
  2. Aldea N, Indrea E (1990a) Fourier analysis of EXAFS and XANES data: a self-contained Fortran program-package: the third version. Comput Phys Commun 60:145–154. doi:10.1016/0010-4655(90)90083-D CrossRefADSGoogle Scholar
  3. Aldea N, Indrea E (1990b) XRLINE, a program to evaluate the crystallite size of supported metal catalysts by single X-ray profile Fourier analysis. Comput Phys Commun 60:155–163. doi:10.1016/0010-4655(90)90084-E CrossRefADSGoogle Scholar
  4. Aldea N, Zapotinschi R, Cosma C (1995) Crystallite size determination for supported metal catalysts by single X-ray profile Fourier analysis. Fresenius J Anal Chem 355:367–369Google Scholar
  5. Aldea N, Tiusan C, Zapotinschi R (1996) A new approach used to evaluation the crystallite size of supported metal catalysts by single X-ray profile Fourier transform implemented on maple V. In: Borcherds P, Bubak M, Maksymowicz A (ed) Proceedings of the 8th joint EPS-APS international conference on physics computing, Krakow, pp 391–394Google Scholar
  6. Aldea N, Gluhoi A, Marginean P, Cosma C, Yaning X (2000) Extended X-ray absorption fine structure and X-ray diffraction studies on supported nickel catalysts. Spectrochim Acta B 55:997–1008. doi:10.1016/S0584-8547(00)00211-1 CrossRefADSGoogle Scholar
  7. Aldea N, Barz B, Silipas TD, Aldea F, Zhonghua Wu (2005) Mathematical study of metal nanoparticle size determination by single X-ray line profile analysis. J Optoelectron Adv Mater 7(6):3093–3100Google Scholar
  8. Asahi R, Taga Y, Manstadt W, Feeman AJ (2000) Electronic and optical properties of anatase TiO2. Phys Rev B 61(11):7459–7465. doi:10.1103/PhysRevB.61.7459 CrossRefADSGoogle Scholar
  9. Chen LX, Liu T, Thurnauer MC, Csencsits R, Rajh T (2002) Fe2O3 Nanoparticle structures investigated by X-ray absorption near-edge structure, surface modification and model calculations. J Phys Chem B 106:8539–8546. doi:10.1021/jp025544x CrossRefGoogle Scholar
  10. Cramer SP, Hodgson KO (1979) X-ray absorption spectroscopy: a new structural method and its applications to bioinorganic chemistry. In: Lippard SJ (ed) Progress in inorganic chemistry, vol 25. Wiley, New York Chichester Brisbane Toronto, pp 1–39CrossRefGoogle Scholar
  11. Ellis PJ, Freeman HC (1995) XFIT—an interactive EXAFS analysis program. J Synchrotron Radiat 2:190–195. doi:10.1107/S0909049595006789 PubMedCrossRefGoogle Scholar
  12. Grunes LA (1983) Study of K edges of 3d transition metals in pure and oxide form by X-ray absorption spectroscopy. Phys Rev B 27(4):2111–2131. doi:10.1103/PhysRevB.27.2111 CrossRefADSGoogle Scholar
  13. Lytle FW, Sayers DE, Stern EA (1989) Report of the international workshop on standards and criteria in X-ray absorption spectroscopy. Physica B 158:701–722. doi:10.1016/0921-4526(89)90351-7 CrossRefGoogle Scholar
  14. McKale AG, Veal BW, Paulikas AP, Chan SK, Knapp GS (1988) Improved ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. J Am Chem Soc 110:3763–3768. doi:10.1021/ja00220a008 CrossRefGoogle Scholar
  15. Modrow H, Bucher S, Rehr JJ, Ankudinov AL (2003) Calculation and interpretation of K-shell X-ray absorption near-edge structure of transition metal oxides. Phys Rev B 67:035123-1–035123-10Google Scholar
  16. Scott RA (1985) Measurement of metal-ligand distances by EXAFS. Methods Enzymol 117:414–459. doi:10.1016/S0076-6879(85)17025-4 CrossRefGoogle Scholar
  17. Sinfelt JH, Via GH, Lytle FW (1984) Application of EXAFS in catalysis. Structure of bimetallic cluster catalysts. Catal Rev Sci Eng 26(1):81–140. doi:10.1080/01614948408078061 CrossRefGoogle Scholar
  18. Stern EA (1988) Theory of EXAFS. In: Koningsberger DC, Prins R (eds) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York, pp 3–51Google Scholar
  19. Turcu R, Peter I, Pana O, Giurgiu L, Aldea N, Barz B, Grecu MN, Coldea A (2004) Structural and magnetic properties of polypyrrole nanocomposites. Mol Cryst Liq Cryst 417:235–243. doi:10.1080/15421400490478939 CrossRefGoogle Scholar
  20. Turcu R, Al Darabont, Nan A, Aldea N, Macovei D, Bica D, Vekas L, Pana O, Soran ML, Koos AA, Biro LP (2006) New polypyrrole-multiwall carbon nanotubes hybrid materials. J Optoelectron Adv Mater 8(2):643–647Google Scholar
  21. Walker JS (1997) Fast Fourier transform, 3rd edn. CRC Boca Raton, New York London, Tokyo, pp 104–116Google Scholar
  22. Warren BE (1969) X-ray diffraction. Addison-Wesley Publishing Company, pp 264–291Google Scholar
  23. Young RA, Gerdes RJ, Wilson AJC (1967) Propagation of some systematic errors in X-ray line profile analysis. Acta Crystallogr 22:155–162. doi:10.1107/S0365110X67000271 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nicolae Aldea
    • 1
  • Rodica Turcu
    • 1
  • Alexandrina Nan
    • 1
  • Izabella Craciunescu
    • 1
  • Ovidiu Pana
    • 1
  • Xie Yaning
    • 2
  • Zhonghua Wu
    • 2
  • Doina Bica
    • 3
  • Ladislau Vekas
    • 3
  • Florica Matei
    • 4
  1. 1.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania
  2. 2.Beijing Synchrotron Radiation Facilities of Beijing, Electron Positron ColliderNational LaboratoryBeijingPeople’s Republic of China
  3. 3.Romanian Academy, Timisoara BranchMagnetic Fluids LaboratoryTimisoaraRomania
  4. 4.Agriculture Sciences and Medicine Veterinary UniversityCluj-NapocaRomania

Personalised recommendations