Skip to main content
Log in

The Composition and Magnetic Structure of Fe3O4/γ-Fe2O3 Core–Shell Nanocomposites at 300 and 80 K: Mössbauer Study (Part I)

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The magnetic structure and the composition of Fe3O4/γ-Fe2O3 nanoparticles are studied at 300 and 80 K with Mössbauer spectroscopy. We found that the Fe3O4/γ-Fe2O3 particles are a core–shell nanocomposite (NC), in which magnetite Fe3O4 is covered with a maghemite shell (γ-Fe2O3). We showed that the thickness of the maghemite shell (γ-Fe2O3) depends on synthesis technology. We found that a layer, whose magnetic structure differs from that of the inner part of the shell (γ-Fe2O3), is formed on the surface of the maghemite shell (γ-Fe2O3) in the Fe3O4/γ-Fe2O3 NC. An intermediate layer is formed in the spin-glass state between the core and the shell. The data on structure of core–shell nanocomposites open up prospects to explain the properties of such particles, which are of great interest to use in various fields, including biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications, Ed. by Eun Ji Chung, L. Leon, and C. Rinaldi (Elsevier, Amsterdam, 2019).

  2. Hybrid Nanostructures for Cancer Theranostics, Ed. by Raghvendra Ashok Bohara and Nanasaheb Thorat (Elsevier, Amsterdam, 2019).

    Google Scholar 

  3. F. Fabris, E. Lima, Jr., E. de Biasi, H. E. Troiani, M. Váasquez Mansilla, T. E. Torres, R. Fernáandez Pacheco, M. Ricardo Ibarra, G. F. Goya, R. D. Zysler, and E. L. Winkler, Nanoscale 11, 3164 (2019).

    Article  Google Scholar 

  4. I. M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, and Ch. V. V. Muralee Gopi, Magnetochemistry 5, 67 (2019).

    Article  Google Scholar 

  5. R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott, and C. B. Taylor, Ann. Surg. 146, 596 (1957).

    Article  Google Scholar 

  6. Y. H. Byun, H. S. Gwak, Y.-W. Kwon, M. K. Song, S. H. Shin, Y. H. Jo, H. Yoo, and S. H. Lee, Int. J. Hyperthermia 35, 168 (2018).

    Article  Google Scholar 

  7. Nanostructures for Cancer Therapy, (Nanostructures in Therapeutic Medicine Series, Ed. by A. Mihai Grumezescu and A. Ficai (Elsevier, Amsterdam, 2017).

    Google Scholar 

  8. K. Mahmoudi, A. Bouras, D. Bozec, R. Ivkov, and C. Hadjipanayis, Int. J. Hyperthermia 34, 1316 (2018).

    Article  Google Scholar 

  9. Yu. I. Golovin, N. L. Klyachko, A. G. Majouga, S. L. Gribanovskii, D. Yu. Golovin, A. O. Zhigachev, A. V. Shuklinov, M. V. Efremova, M. M. Veselov, K. Yu. Vlasova, A. D. Usvaliev, I. M. Le-Deygen, and A. V. Kabanov, Nanotechnol. Russ. 13, 215 (2018).

    Article  Google Scholar 

  10. W. Xie, Z. Guo, F. Gao, Q. Gao, D. Wang, B.-S. Liaw, Q. Cai, X. Sun, X. Wang, and L. Zhao, Theranostics 8, 3284 (2018).

    Article  Google Scholar 

  11. C. J. Xu and S. H. Sun, Adv. Drug Deliv. Rev. 65, 732 (2013).

    Article  Google Scholar 

  12. P. Granitzer, K. Rumpf, Y. Tian, G. Akkaraju, J. Coffer, P. Poelt, and M. Reissner, Appl. Phys. Lett. 102, 193110 (2013).

    Article  ADS  Google Scholar 

  13. M. Jeun, S. Lee, J. K. Kang, A. Tomitaka, K. W. Kang, Y. I. Kim, Y. Takemura, K. W. Chung, J. Kwak, and S. Bae, Appl. Phys. Lett. 100, 092406 (2012).

    Article  ADS  Google Scholar 

  14. Y. Hwang, S. Angappane, J. Park, K. An, T. Hyeon, and J.-G. Park, Curr. Appl. Phys. 12, 808 (2012).

    Article  ADS  Google Scholar 

  15. M. H. Phan, J. Alonso, H. Khurshid, P. Lampen-Kelley, S. Chandra, K. S. Repa, Z. Nemati, R. Das, O. Iglesias, and H. Srikanth, Nanomaterials 6, 221 (2016).

    Article  Google Scholar 

  16. B. Kalska-Szostko, U. Wykowska, and D. Satula, Colloids Surf., A 481, 527 (2015).

    Article  Google Scholar 

  17. K. Chatterjee, S. Sarkar, K. Jagajjanani Rao, and S. Paria, Adv. Colloid Interface Sci. 209, 8 (2014).

    Article  Google Scholar 

  18. L. E. Euliss, S. G. Grancharov, S. O’Brien, T. J. Deming, G. D. Stucky, C. B. Murray, and G. A. Held, Nano Lett. 3, 1489 (2003).

    Article  ADS  Google Scholar 

  19. R. Hong, N. O. Fischer, T. Emrick, and V. M. Rotello, Chem. Mater. 17, 4617 (2005).

    Article  Google Scholar 

  20. M. Kim, Y. Chen, Y. Liu, and X. Peng, Adv. Mater. 17, 1429 (2005).

    Article  Google Scholar 

  21. Y. Kobayashi, M. Horie, M. Konno, B. Rodriguez-Gonzalez, and L. M. Liz-Marzan, J. Phys. Chem. B 107, 7420 (2003).

    Article  Google Scholar 

  22. A.-H. Lu, W. Li, N. Matoussevitch, B. Spliethoff, H. Bonne-0mann, and F. Schuth, Chem. Commun. 1, 98 (2005).

    Article  Google Scholar 

  23. Q. Liu, Z. Xu, J. A. Finch, and R. Egerton, Chem. Mater. 10, 3936 (1998).

    Article  Google Scholar 

  24. N. S. Sobal, M. Hilgendorff, H. Moehwald, M. Giersig, M. Spasova, T. Radetic, and M. Farle, Nano Lett. 2, 62 (2002).

    Article  Google Scholar 

  25. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 104 (1957).

    Article  ADS  Google Scholar 

  26. U. Colombo, G. Fagherazzi, S. Gazzarrini, G. Lanzavecchia, and G. Sroni, Nature (London, U.K.) 219, 1036 (1968).

    Article  ADS  Google Scholar 

  27. D.-E. Lee, H. Koo, I-C. Sun, J. N. Ryu, K. Kim, and I. C. Kwon, Chem. Soc. Rev. 41, 2656 (2012).

    Article  Google Scholar 

  28. Sh.-Ch. Lee, Ch.-M. Fu, and F.-H. Chang, Appl. Phys. Lett. 103, 163104 (2013).

    Article  ADS  Google Scholar 

  29. A. V. Bykov, V. I. Nikolaev, E. Reguera Ruiz, Yu. Ya. Kharitonov, O. G. Cherkasova, and V. I. Shulgin, Hyperfine Interact. 67, 603 (1991).

    Article  ADS  Google Scholar 

  30. H. S. Dehsari, V. Ksenofontov, A. Möller, G. Jakob, and K. Asadi, J. Phys. Chem. C 122, 28292 (2018).

    Article  Google Scholar 

  31. M. Starowicz, P. Starowicz, J. Zukrowski, J. Przewoznik, A. Lemanski, C. Kapusta, and J. Banas, J. Nanopart. Res. 13, 7167 (2011).

    Article  ADS  Google Scholar 

  32. O. M. Lemine, Hybrid Nanostructures for Cancer Theranostics, Micro and Nano Technologies Series (Elsevier, Amsterdam, 2019), Chap. 7, p. 125.

    Google Scholar 

  33. I. M. Obaidat, Ch. Nayek, K. Manna, G. Bhattacharjee, I. A. Al-Omari, and A. Gismelseed, Nanomaterials 7, 415 (2017).

    Article  Google Scholar 

  34. J. Mazo-Zuluaga, C. A. Barrero, J. Díaz-Teran, and A. Jerez, Hyperfine Interact. 148–149, 153 (2003).

    Article  ADS  Google Scholar 

  35. B. Kalska-Szostko and K. Kropniewicka, Curr. Appl. Phys. 12, 896 (2012).

    Article  ADS  Google Scholar 

  36. B. Kalska-Szostko, U. Wykowska, A. Basa, and K. Szymanski, Nukleonika 58, 35 (2013).

    Google Scholar 

  37. B. Kalska-Szostko, U. Wykowska, D. Satula, and E. Zambrzycka, Colloids Surf., B 113, 295 (2014).

    Article  Google Scholar 

  38. W. Wei, W. Zhaohui, Y. Taekyung, J. Changzhong, and K. Woo-Sik, Sci. Technol. Adv. Mater. 16, 23501 (2015).

    Article  Google Scholar 

  39. M. Unni, A. M. Uhl, S. Savliwala, B. H. Savitzky, R. Dhavalikar, N. Garraud, D. P. Arnold, L. F. Kourkoutis, J. S. Andrew, and C. Rinaldi, ACS Nano 11, 2284 (2017).

    Article  Google Scholar 

  40. P. Kaur, L. Maureen Aliru, C. S. Awalpreet, A. Asea, and S. Krishnan, Int. J. Hypertherm. 32, 76 (2016).

    Article  Google Scholar 

  41. E. A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, and F. J. Teran, Appl. Phys. Rev. 2, 041302 (2015).

    Article  ADS  Google Scholar 

  42. Y. Hwang, S. Angappane, J. Park, K. An, T. Hyeon, and J.-G. Park, Curr. Appl. Phys. 12, 808 (2012).

    Article  ADS  Google Scholar 

  43. S. Mandal and K. Chaudhuri, in Complex Magnetic Nanostructures, Ed. by S. K. Sharma (Springer Int., Cham, Switzerland, 2017), Chap. 12, p. 425.

    Google Scholar 

  44. R. Frison, G. Cernuto, A. Cervellino, O. Zaharko, G. M. Colonna, A. Guagliardi, and N. Masciocchi, Chem. Mater. 25, 4820 (2013).

    Article  Google Scholar 

  45. A. Cervellino, R. Frison, G. Cernuto, A. Guagliardib, and N. Masciocchi, J. Appl. Crystallogr. 47, 1755 (2014).

    Article  Google Scholar 

  46. D. Polikarpov, R. Gabbasov, V. Cherepanov, N. Loginova, E. Loseva, M. Nikitin, A. Yurenia, and V. Panchenko, J. Magn. Magn. Mater. 380, 78 (2015).

    Article  ADS  Google Scholar 

  47. A. S. Kamzin and N. Wakiya, Phys. Solid State 60, 2608 (2018).

    Article  ADS  Google Scholar 

  48. A. S. Kamzin, H. Das, N. Wakiya, and A. A. Valiullin, Phys. Solid State 60, 1752 (2018).

    Article  ADS  Google Scholar 

  49. J. S. Salazar, L. Perez, O. de Abril, L. T. Phuoc, D. Ihiawakrim, M. Vazquez, J.-M. Greneche, S. Begin-Colin, and G. Pourroy, Chem. Mater. 23, 1379 (2011).

    Article  Google Scholar 

  50. R. A. Frimpong, J. Dou, M. Pechan, and J. Z. Hilt, J. Magn. Magn. Mater. 322, 326 (2010).

    Article  ADS  Google Scholar 

  51. I. M. Obaidat, Ch. Nayek, and K. Manna, Appl. Sci. 7, 1269 (2017).

    Article  Google Scholar 

  52. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  53. J. Smit and H. P. J. Wijn, Ferrites (Wiley, New York, 1959).

    Google Scholar 

  54. V. Chlan, J. Zukrowski, A. Bosak, Z. Kakol, A. Kozlowski, Z. Tarnawski, R. Reznıcek, H. Stepankova, P. Novak, L. Bialo, and J. M. Honig, Phys. Rev. B 98, 125138 (2018).

    Article  ADS  Google Scholar 

  55. M. A. Shipilin, I. N. Zakharova, A. M. Shipilin, and V. I. Bachurin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 557 (2014).

    Article  Google Scholar 

  56. E. Tronc, A. Ezzir, R. Cherkaoui, C. Chaneác, M. Noguès, H. Kachkachi, D. Fiorani, A. M. Testa, J. M. Grenèche, and J. P. Jolivet, J. Magn. Magn. Mater. 221, 63 (2000).

    Article  ADS  Google Scholar 

  57. I. N. Zakharova, M. A. Shipilin, V. P. Alekseev, and A. M. Shipilin, Tech. Phys. Lett. 38, 55 (2012).

    Article  ADS  Google Scholar 

  58. G. C. Papaefthymiou, Phys. Rev. B 80, 024406 (2009).

    Article  ADS  Google Scholar 

  59. H.-R. Yin and J.-S. Jiang, J. Mater. Sci. 40, 3013 (2005).

    Article  ADS  Google Scholar 

  60. J. Ghose, K. S. K. Varadwaj, and D. Das, Hyperfine Interact. 156–157, 63 (2004).

    Article  ADS  Google Scholar 

  61. D. G. Klissurski, I. G. Mitov, T. Tomov, L. Gyurova, V. Zapletal, J. Šubrt, and K. Bechine, J. Mater. Sci. Lett. 5, 525 (1986).

    Article  Google Scholar 

  62. M. Fujinami and Y. Ujihira, J. Mater. Sci. 20, 1859 (1985).

    Article  ADS  Google Scholar 

  63. K. Kluchova, R. Zboril, J. Tucek, M. Pecova, L. Zajoncova, I. Safarik, M. Mashlan, I. Markova, D. Jancik, M. Sebela, H. Bartonkova, V. Belessi, P. Novak, and D. Petridis, Biomaterials 30, 2855 (2009).

    Article  Google Scholar 

  64. E. Murad and J. H. Johnston, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Ed. by G. J. Long (Plenum, New York, 1987), Vol. 2.

    Google Scholar 

  65. L. Häggström, S. Kamali, T. Ericsson, P. Nordblad, A. Ahniyaz, and L. Bergström, in Proceedings of the 29th International Conference on the Applications of the Mössbauer Effect ICAME 2007, Kanpur, India, October 14–19,2007.

  66. R. E. Vandenberghe and E. de Grave, J. Appl. Phys. 99, 083908 (2006).

    Article  Google Scholar 

  67. E. Lima, A. L. Brandl, A. D. Arelaro, G. F. Goya, I. Letard, C. Cartier dit Moulin, M. Noguès, C. Chanéac, J.-P. Jolivet, and P. Sainctavit, J. Magn. Magn. Mater. 288, 354 (2005).

    Article  Google Scholar 

  68. S. Brice-Profeta, M.-A. Arrio, E. Tronc, and N. Mengu, Mössbauer Spectroscopy Applied to Inorganic Chemistry, Ed. by G. J. Long and F. Grandjean (Plenum, New York, 1989), Vol. 3.

    Google Scholar 

  69. R. R. Gabbasov, V. M. Cherepanov, M. A. Chuev, M. A. Polikarpov, and V. Y. Panchenko, Hyperfine Interact. 226, 383 (2014).

    Article  ADS  Google Scholar 

  70. M. Siddique, N. Hussain, and M. Shafi, J. Mater. Sci. Technol. 25, 479 (2009).

    Article  Google Scholar 

  71. G. A. Sawatzky, C. Boekema, and F. van der Woude, in Proceedings of the International Conference on Manetism, Dresden,1971, p. 238.

  72. F. van der Woude and G. A. Sawatzky, Phys. Rev. B 4, 3159 (1971).

    Article  ADS  Google Scholar 

  73. L. Theil Kuhn, A. Bojesen, L. Timmermann, M. Meedom Nielsen, and S. Morup, J. Phys.: Condens. Matter 14, 13551 (2002).

    ADS  Google Scholar 

  74. S. Morup, E. Brok, and C. Frandsen, J. Nanomater. 2013, 720629 (2013).

    Article  Google Scholar 

  75. B. Martınez, X. Obradors, L. Balcells, A. Rouanet, and C. Monty, Phys. Rev. Lett. 80, 181 (1998).

    Article  ADS  Google Scholar 

  76. K. Nadeem, H. Krenn, T. Traussing, and I. Letofsky-Papst, J. Appl. Phys. 109, 013912 (2011).

    Article  ADS  Google Scholar 

  77. R. Topkaya, O. Akman, S. Kazan, B. Aktas, Z. Durmus, and A. Baykal, J. Nanopart. Res. 14, 1156 (2012).

    Article  ADS  Google Scholar 

  78. V. V. Grecu, S. Constantinescu, M. N. Grecu, R. Olar, M. Badea, and R. Turcu, Hyperfine Interact. 183, 205 (2008).

    Article  ADS  Google Scholar 

  79. S. W. Lee, S. J. Kim, In-Bo Shim, S. Bae, and Ch. S. Kim, IEEE Trans. Magn. 41, 4114 (2005).

    Article  ADS  Google Scholar 

  80. M. D. Carvalho, F. Henriques, L. P. Ferreira, M. Godinho, and M. M. Cruz, J. Solid State Chem. 201, 144 (2013).

    Article  ADS  Google Scholar 

  81. I. P. Suzdalev, Yu. V. Maksimov, V. N. Buravtsev, V. K. Imshennik, S. V. Novichikhin, V. V. Matveev, and I. S. Lyubutin, Russ. J. Phys. Chem. B 6, 163 (2012).

    Article  Google Scholar 

  82. A. G. Akopdzhanov, N. L. Shimanovskii, V. Yu. Naumenko, I. P. Suzdalev, V. K. Imshennik, Yu. V. Maksimov, and S. V. Novichikhin, Russ. J. Phys. Chem. B 8, 584 (2014).

    Article  Google Scholar 

  83. S. Kamali, T. Ericsson, and R. Wappling, Thin Solid Films 515, 721 (2006).

    Article  ADS  Google Scholar 

  84. J. C. Matos, M. C. Gonçalves, L. C. J. Pereira, B. J. C. Vieira, and J. Carlos Waerenborgh, Nanomater. 9, 943 (2019).

    Article  Google Scholar 

  85. V. Yathindranath, L. Rebbouh, D. F. Moore, D. W. Miller, J. Lierop, and T. Hegmann, Adv. Funct. Mater. 21, 1457 (2011).

    Article  Google Scholar 

Download references

Funding

I.M. Obaidat and I.A. Al-Omari are grateful to the financial support of the UAEU Advanced Research Program (UPAR), grant No. 31S241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamzin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzin, A.S., Obaidat, I.M., Valliulin, A.A. et al. The Composition and Magnetic Structure of Fe3O4/γ-Fe2O3 Core–Shell Nanocomposites at 300 and 80 K: Mössbauer Study (Part I). Phys. Solid State 62, 1933–1943 (2020). https://doi.org/10.1134/S1063783420100157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100157

Keywords:

Navigation