Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1405–1420 | Cite as

Interactions of Fe atom with single wall armchair SiC nanotubes: an ab initio study

Research Paper


A systematic study of Fe atom encapsulation and adsorption in armchair SiC nanotubes (SiCNT) with diameters in the range of 5.313 to 10.582 Å has been performed using hybrid density functional theory and a finite cluster approximation. A detailed comparison of the binding energies, equilibrium positions, Mulliken charges, and spin magnetic moments of Fe atoms has been performed for three types of nanotubes. The electronic states, HOMO–LUMO gaps, and changes in gaps with respect to the bare nanotube gaps have been investigated as well. Our results show that the properties of SiCNT can be modified by Fe atom encapsulation and adsorption. Binding energies of the encapsulated and adsorbed systems indicate that these structures are stable and show site dependence. For both cases a significant band gap decrease is observed for type 1 nanotubes enabling band gap tailoring. This decrease is not observed for the other two types with a larger diameter. All structures are found to have magnetic ground states with high magnetic moments indicating the possibility of them being used in spintronics applications.


Fe atom SiC nanotube Interactions Hybrid density functional theory Electronic and geometric structures Nanoscale modeling and simulation 


  1. Alam KM, Ray AK (2007) A hybrid density functional study of zigzag silicon carbide nanotubes. Nanotechnology 18:495706.1–495706.10Google Scholar
  2. Alam KM, Ray AK (2008) Hybrid density functional study of armchair SiC nanotubes. Phys Rev B 77:035436.1–035436.10Google Scholar
  3. Andriotis AN, Menon M, Froudakis G (2000) Catalytic action of Ni atoms in the formation of carbon nanotubes: a molecular dynamics study. Phys Rev Lett 85:3193–3196. doi:10.1103/PhysRevLett.85.3193 PubMedCrossRefADSGoogle Scholar
  4. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913 CrossRefADSGoogle Scholar
  5. Becke AD (1998) A new inhomogeneity parameter in density-functional theory. J Chem Phys 109:2092–2098. doi:10.1063/1.476722 CrossRefADSGoogle Scholar
  6. Borowiak-Palen E, Ruemmeli MH, Gemming T, Knupfer M, Biedermann K, Leonhardt A, Pichler T, Kalenczuk RJ (2005) Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J Appl Phys 97:056102.1–056102.3Google Scholar
  7. Dag S, Durgun E, Ciraci S (2004) High-conducting magnetic nanowires obtained from uniform titanium-covered carbon nanotubes. Phys Rev B 69:121407.1–121407.4(R)Google Scholar
  8. Dresselhaus MS, Dresselhaus G, Avouris PH (2001) Carbon nanotubes-synthesis, structure, properties and applications, topics in applied physics, vol 80. Springer, BerlinGoogle Scholar
  9. Dunning TH Jr, Hay PJ (1976) Modern theoretical chemistry. Plenum, New York, pp 1–28Google Scholar
  10. Durgun E, Dag S, Bagci VMK, Gülseren O, Yildirim T, Ciraci S (2003) Systematic study of adsorption of single atoms on a carbon nanotube. Phys Rev B 67:201401.1–201401.4(R)Google Scholar
  11. Durgun E, Dag S, Ciraci S, Gülseren O (2004) Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes. J Phys Chem B 108:575–582. doi:10.1021/jp0358578 CrossRefGoogle Scholar
  12. Fagan SB, Mota R, da Silva AJR, Fazzio A (2003) Ab initio study of an iron atom interacting with single-wall carbon nanotubes. Phys Rev B 67:205414.1–205414.5Google Scholar
  13. Frisch MJ (2003) Gaussian 03, Revision A.1. Gaussian Inc, Pittsburgh, PAGoogle Scholar
  14. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. doi:10.1063/1.448799 CrossRefADSGoogle Scholar
  15. He T, Zhao M, Xia Y, Li W, Song C, Lin X, Liu X, Mei L (2006) Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx [x = 1,2] groups. J Chem Phys 125:194710.1–194710.5Google Scholar
  16. Hehre WJ, Schleyer RadomL, PvR PopleJA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  17. Heyd J, Scuseria GE (2004) Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J Chem Phys 121:1187–1192. doi:10.1063/1.1760074 PubMedCrossRefADSGoogle Scholar
  18. Hiura H, Miyazaki T, Kanayama T (2001) Formation of metal-encapsulating Si cage clusters. Phys Rev Lett 86:1733–1736. doi:10.1103/PhysRevLett.86.1733 PubMedCrossRefADSGoogle Scholar
  19. Hu JQ, Bando Y, Zhan JH, Goberg D (2004) Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets) and SiC nanotubes (and tubes). Appl Phys Lett 85:2932–2934. doi:10.1063/1.1801168 CrossRefADSGoogle Scholar
  20. Huczko A, Bystrzejewski M, Lange H, Fabianowska A, Cudzilo S, Panas A, Szala M (2005) Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J Phys Chem B 109:16244–16251. doi:10.1021/jp050837m PubMedCrossRefGoogle Scholar
  21. Huda MN, Ray AK (2004) Carbon dimer in silicon cage: A class of highly stable silicon carbide clusters. Phys Rev A 69:011201.1–011201.4 (R)Google Scholar
  22. Huda MN, Ray AK (2008) Evolution of SiC nanocluster from carbon fullerene: a density functional theoretic study. Chem Phys Lett 457:124–129. doi:10.1016/j.cplett.2008.03.057 CrossRefADSGoogle Scholar
  23. Huda MN, Kleinman L, Ray AK (2007) Silicon carbide nanostructures to nanotubes. J Comput Theory Nanosci 4:739–744Google Scholar
  24. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0 CrossRefADSGoogle Scholar
  25. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605. doi:10.1038/363603a0 CrossRefADSGoogle Scholar
  26. Javey A, Guo J, Paulsson M, Wang Q, Mann D, Lundstrom M, Dai H (2004) High-field quasiballistic transport in short carbon nanotubes. Phys Rev Lett 92:106804.1–106804.4Google Scholar
  27. Keller N, Pham-Huu C, Ehret G, Keller V, Ledoux MJ (2003) Synthesis and characterization of medium surface area silicon carbide nanotubes. Carbon 41:2131–2139. doi:10.1016/S0008-6223(03)00239-2 CrossRefGoogle Scholar
  28. Kong K, Han S, Ihm J (1999) Development of an energy barrier at the metal-chain-metallic-carbon-nanotube nanocontact. Phys Rev B 60:6074–6079. doi:10.1103/PhysRevB.60.6074 CrossRefADSGoogle Scholar
  29. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785 CrossRefADSGoogle Scholar
  30. Lee YH, Kim SG, Tomanek D (1997) Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys Rev Lett 78:2393–2396. doi:10.1103/PhysRevLett.78.2393 CrossRefADSGoogle Scholar
  31. Li F, Xia Y-Y, Zhao M-W, Liu X-D, Huang B-D, Yang Z-H, Ji Y-J, Song C (2005) Density-functional theory calculations of XH3-decorated SiC nanotubes (X = {C, Si}): Structures, energetics, and electronic structures. J Appl Phys 97:104311.1–104311.4Google Scholar
  32. Mao Y-L, Yan X-H, Xiao Y (2005) First-principles study of transition-metal-doped single-walled carbon nanotubes. Nanotechnology 16:3092–3096. doi:10.1088/0957-4484/16/12/061 CrossRefADSGoogle Scholar
  33. Mavrandonakis G, Froudakis E, Schnell M, Muhlhäusert M (2003) From pure carbon to silicon-carbon nanotubes: an ab initio study. Nano Lett 3:1481–1484. doi:10.1021/nl0343250 CrossRefADSGoogle Scholar
  34. Meng T, Wang C-Y, Wang S-Y (2007) First-principles study of a single Ti atom adsorbed on silicon carbide nanotubes and the corresponding adsorption of hydrogen molecules to the Ti atom. Chem Phys Lett 437:224–228. doi:10.1016/j.cplett.2007.02.024 CrossRefADSGoogle Scholar
  35. Menon M, Richter E, Mavrandonakis A, Froudakis G, Andriotis AN (2004) Structure and stability of SiC nanotubes. Phys Rev B 69:115322.1–115322.4Google Scholar
  36. Miyamoto Y, Yu BD (2002) Computational designing of graphitic silicon carbide and its tubular forms. Appl Phys Lett 80:586–588. doi:10.1063/1.1445474 CrossRefADSGoogle Scholar
  37. Mukherjee S, Ray AK (2008) An ab initio study of molecular hydrogen interaction with SiC nanotube—a precursor to hydrogen storage. J Comput Theory Nanosci 5:1210–1219. doi:10.1166/jctn.2008.003 CrossRefGoogle Scholar
  38. Muscat J, Wander A, Harrison NM (2001) On the prediction of band gaps from hybrid functional theory. Chem Phys Lett 342:397–401. doi:10.1016/S0009-2614(01)00616-9 CrossRefADSGoogle Scholar
  39. Nhut JM, Vieira R, Pesant L, Tessonnier J-P, Keller N, Ehret G, Pham-Huu C, Ledoux MJ (2002) Synthesis and catalytic uses of carbon and silicon carbide nanostructures. Catal Today 79:11–32. doi:10.1016/S0920-5861(02)00206-7 CrossRefGoogle Scholar
  40. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694. doi:10.1103/PhysRevLett.49.1691 CrossRefADSGoogle Scholar
  41. Pham-Huu C, Keller N, Ehret GC, Ledoux MJ (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200:400–410. doi:10.1006/jcat.2001.3216 CrossRefGoogle Scholar
  42. Ray AK, Huda MN (2006) Silicon-carbide nano clusters: a pathway to future nano–electronics. Review article. J Comput Theory Nanosci 3:315–341Google Scholar
  43. Roco MC, Williams RS, Alivisatos P (2000) Nanotechnology research directions: IWGN workshop report—vision for nanotechnology in the next decade. Springer, BerlinGoogle Scholar
  44. Singh AK, Briere TM, Kumar V, Kawazoe Y (2003) Magnetism in transition-metal-doped silicon nanotubes. Phys Rev Lett 91:146802.1–146802.4Google Scholar
  45. Srinivasan A, Huda MN, Ray AK (2005) Silicon-carbon fullerene-like nanostructures: an ab initio study on the stability of Si60C2n (n = 1,2) clusters. Phys Rev A 72:063201.1–063201.10Google Scholar
  46. Sun X-H, Li C-P, Wong W-K, Wong N-B, Lee C-S, Lee S-T, Teo B-T (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464–14471. doi:10.1021/ja0273997 PubMedCrossRefGoogle Scholar
  47. Taguchi T, Igawa N, Yamamoto H, Shamoto S, Jitsukawa S (2005a) Preparation and characterization of single-phase SiC nanotubes and C-SiC coaxial nanotubes. Phys E Amst 28:431–438Google Scholar
  48. Taguchi T, Igawa N, Yamamoto H, Jitsukawa S (2005b) Synthesis of silicon carbide nanotubes. J Am Ceram Soc 88:459–461. doi:10.1111/j.1551-2916.2005.00066.x CrossRefGoogle Scholar
  49. Wind SJ, Appenzeller J, Avouris P (2003) Lateral scaling in carbon-nanotube field-effect transistors. Phys Rev Lett 91:58301.1–58301.4Google Scholar
  50. Yagi Y, Briere TM, Sluiter MHF, Kumar V, Farajian AA, Kawazoe Y (2004) Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: a first-principles study. Phys Rev B 69:075414.1–075414.9Google Scholar
  51. Young DC (2001) Computational chemistry. Wiley, New YorkCrossRefGoogle Scholar
  52. Zhang Y, Dai H (2000) Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl Phys Lett 77:3015–3017. doi:10.1063/1.1324731 CrossRefADSGoogle Scholar
  53. Zhang Y, Franklin NW, Chen RJ, Dai H (2000) Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction. Chem Phys Lett 331:35–41. doi:10.1016/S0009-2614(00)01162-3 CrossRefADSGoogle Scholar
  54. Zhao J-X, Ding Y-H (2008) Silicon carbide nanotubes functionalized by transition metal atoms: a density-functional study. J Phys Chem C 112:2558–2564. doi:10.1021/jp073722m CrossRefGoogle Scholar
  55. Zhao MW, Xia YY, Li F, Zhang RQ, Lee S-T (2005) Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations. Phys Rev B 71:085312.1–085312.6Google Scholar
  56. Zhao MW, Xia YY, Zhang RQ, Lee S-T (2005) Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation. J Chem Phys 122:214707.1–214707.5Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations