Skip to main content
Log in

Plasma synthesis of nanopowders

  • Review Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

There is a huge variety of plasma processes for synthesis of nanoparticulate powders. They may be grouped with respect to operating temperature, which is the essential parameter with respect to the properties of the products. In view of industrial production, the highest degree of maturity is found in high temperature processes working under ambient pressure. For products, where well-defined properties are demanded, low temperature microwave plasma processes are best suited. Additionally, these processes allow coating of the produced particles, even with organic phases. Other processes where plasmas are involved, such as laser or flame processes coupled with electric fields have, to some extent, a high potential for development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Anderson H, Kodas T, Smith DT (1989) Vapor phase processing of powders: plasma synthesis and aerosol decomposition. Ceram Bull 68:996–1000

    CAS  Google Scholar 

  • Boulos MI (1984) Modelling of plasma processes. In: Szekely J, Apelian D (eds) Plasma processing and synthesis of materials symposium. North-Holland, New York, NY, USA, pp 53–60

    Google Scholar 

  • Brenner JR, Harkness JBL, Knickelbein MB, Krumdick GK, Marshall CL (1997) Microwave plasma synthesis of carbon-supported ultrafine metal particles. Nanostruct Mater 8:1–17

    Article  CAS  Google Scholar 

  • Buss RJ (1997) Rf-plasma synthesis of nanosize silicon carbide and nitride, SAND97–0039

  • Castillo IA, Munz RJ (2005) Inductively coupled plasma synthesis of CeO2-based powders from liquid solutions for SOFC electrolytes. Plasma Chem Plasma Process 25:87–107

    Article  CAS  Google Scholar 

  • Chau JLH, Hsu MK, Hsie CC, Kao CC (2005) Microwave plasma synthesis of silver nanopowders. Mater Lett 59:905–908

    Article  CAS  Google Scholar 

  • Chau CLH, Hsu MK, Kao CC (2006) Microwave plasma synthesis of Co and SiC-coated Co nanopowders. Mater Lett 60:947–951

    Google Scholar 

  • Cota-Sanchez G, Soucy G, Huczko A, Lange H (2005) Induction plasma synthesis of fullerenes and nanotubes using carbon black-nickel particles. Carbon 43:3153–3166

    Article  CAS  Google Scholar 

  • Cruden BA, Cassell AM, Ye Q, Meyyappan M (2003) Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. J Appl Phys 94:4070–4078

    Article  CAS  Google Scholar 

  • David B, Pizúrová N, Schneeweiss O, Bezdicka P, Morjan I, Alexandrescu R (2004) Preparation of iron/graphite core-shell structured nanoparticles. J Alloy Compd 378:112–116

    Article  CAS  Google Scholar 

  • Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis M, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) Bulk synthesis of inorganic fullerene-like MS2 from the respective trioxides and the reaction mechanism. J Am Chem Soc 118:5362–5367

    Article  CAS  Google Scholar 

  • Goortani BM, Mendoza N, Proulx N (2006) Synthesis of SiO2 nanoparticles in RF plasma reactors: effect of feed rate and quench gas injection. Int J Chem React Eng 4: Article A33

  • Grabis J, Kuzjukevics A, Rasmane D, Mogensen M, Linderoth SJ (1998) Preparation of nanocrystalline YSZ powders by the plasma technique. J Mater Sci 33:723–728

    Article  CAS  Google Scholar 

  • He Y, Li X, Swihart MT (2005) Laser-driven aerosol synthesis of nickel nanoparticles. Chem Mater 17:1017–1026

    Article  CAS  Google Scholar 

  • Heberlein JVR (1989) Plasma technology in materials processing. Cryst Prop Prep 22–25:707–726

    Google Scholar 

  • Kalyanaraman R, Yoo S, Krupshankara MS, Sudarshan TS, Dowding RJ (1998) Synthesis and consolidation of iron nanopowders. Nanostruct Mater 10:1379–1392

    Article  CAS  Google Scholar 

  • Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596

    Article  CAS  Google Scholar 

  • Kammler H (2002) Synthesis of oxide nanoparticles with closely controlled characteristics. PhD thesis, ETH Zürich #14622

  • Kaneko T, Odaka Y, Tada E, Hatakeyama R (2002) Generation and control of field-aligned flow velocity shear in a fully ionized collisionless plasma. Rev Sci Instrum 73:4218–4222

    Article  CAS  Google Scholar 

  • Karthikeyan J, Berndt CC, Tikkanen J, Reddy S, Herman H (1997) Plasma spray synthesis of nanomaterial powders and deposits. Mater Sci Eng A238:275–286

    CAS  Google Scholar 

  • Kim K (2005) Plasma synthesis and characterization of nanocrystalline aluminum nitride particles by aluminum plasma jet discharge. J Cryst Growth 283:540–546

    Article  CAS  Google Scholar 

  • Ko TS, Yang S, Hsu HC, Chu CP, Lin HF, Liao SC, Lu TC, Kuo HC, Hsieh WF, Wang SC (2006) ZnO nanopowders fabricated by dc thermal plasma synthesis. Mater Sci Eng B 134:54–58

    Article  CAS  Google Scholar 

  • Kortshagen U, Bhandarkar U (1999) Modeling of particulate coagulation in low pressure plasmas. Phys Rev E 60:887–898

    Article  CAS  Google Scholar 

  • Langmuir I (1928) Oscillations in ionized gases. Proc Natl Acad Sci USA 14:627–637

    Article  CAS  Google Scholar 

  • Li Q, Sasaki T, Koshizaki N (1999) Pressure dependence of the morphology and size of cobalt (II, III) oxide nanoparticles prepared by pulsed-laser ablation. Appl Phys A69:115–118

    Google Scholar 

  • MacDonald AD (1966) Microwave breakdown in gases. Wiley & Sons, New York

    Google Scholar 

  • Mangolini L, Jurbergs D, Rogojina E, Kortshagen U (2006) Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals. Phys Stat Sol (c) 3:3975–3978

    Google Scholar 

  • Manolache S, Denes F (2000) Synthesis of nanoparticles under cold-plasma conditions. J Photopolym Sci Technol 13:51–62

    Article  CAS  Google Scholar 

  • Marzik JV, Suplinskas RJ, Wilke RHT, Canfield PC, Finnemore DK, Rindfleisch M, Margolies J, Hannahs ST (2005) Plasma synthesized doped B powders for MgB2 superconductors. Physica C 423:83–88

    Article  CAS  Google Scholar 

  • Matsui I (2006) Preparation of magnetic nanoparticles by pulsed plasma chemical vapor synthesis. J Nanopart Res 8:429–443

    Article  CAS  Google Scholar 

  • Mohai J, Szepvölgyi I, Bertot M, Mohai J, Gubicza T, Ungar T (2001) Thermal plasma synthesis of zinc ferrite nanopowders. Solid State Ion 141–142:163–168

    Article  Google Scholar 

  • Morjan I, Alexandrescu R, Soare I, Dumitrache F, Sandu I, Voicu I, Crunteanu A, Vasile E, Ciupina V, Martelli S (2003) Nanoscale powders of different iron oxide phases prepared by continuous laser irradiation of iron pentacarbonyl-containing gas precursors. Mater Sci Eng C 23:211–216

    Article  Google Scholar 

  • Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219

    Article  CAS  Google Scholar 

  • Puretzky AA, Geohegan DB, Fan X, Pennycook SJ (2000) Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Appl Phys A70:153–160

    Google Scholar 

  • Rao NP, Girshick SL, McMurrey PH, Heberlein JVR (1999) US-patent #5,874,134

  • Schulz O, Hausner H (1987) Plasmasynthese keramischer Sinterpulver für Hochleistungskeramik. Elektrowärme, Int Edt 45:174–182

    Google Scholar 

  • Schulz O, Hausner H (1992) Plasma synthesis of silicon nitride powders. Ceram Int 18:177–183

    Google Scholar 

  • Schweigert IV, Schweigert J (1996) Coagulation in a low-temperature plasma. J Phys D 29:655–659

    Article  CAS  Google Scholar 

  • Shimada M, Azuma Y, Okuyama Y, Hayashi Y, Tanabe E (2006) Plasma synthesis of light emitting gallium nitride nanoparticles using a novel microwave-resonant cavity. Jpn J Appl Phys 45:328–332

    Article  CAS  Google Scholar 

  • Son S, Swaminathan R, McHenry MEJ (2003) Structure and magnetic properties of RF thermal plasma synthesized Mn and Mn–Zn ferrite nanoparticles. Appl Phys 93:7495–7497

    Article  CAS  Google Scholar 

  • Szekely J (1984) An overview of plasma processing. In: Szekely J, Apelian D (eds) Plasma processing and synthesis of materials symposium. North-Holland, New York, NY, USA, pp 1–11

    Google Scholar 

  • Szépvölgyi J, Mohail I, Gubicza J, Sáray I (2004) RF plasma synthesis of ferrite nanopowders from metallurgical wastes. Key Eng Mater 264–268:2359–2362

    Google Scholar 

  • Taylor PR, Vidal EE (1999) Thermal plasma synthesis of ceramic powders. In: Marquis EDS (ed) Powder materials: current research and industrial practices. Proceedings of symposium held during 1999 TMS fall meeting. TMS Miner Metals & Mater Soc, Warrendale, PA, USA, pp 173–185

  • Tekna Plasma Systems Inc (2007) Canada. http://www.tekna.com.

  • Tong L, Reddy RG (2005) Synthesis of titanium carbide nano-powders by thermal plasma. Scripta Materialia 52:1253–1258

    Article  CAS  Google Scholar 

  • Troitskiy VN, Domashnev IA, Kurkin EN, Grebtsova OM, Berestenko VI, Balikhin IL, Gurov SV (2003) Synthesis and characteristics of ultra-fine superconducting powders in the Nb–N, Nb–N–C, Nb–Ti–N–C systems. J Nanopart Res 5:521–528

    Article  CAS  Google Scholar 

  • Vissokov G, Grancharov I, Tsvetanov T (2003) On the plasma-chemical synthesis of nanopowders. Plasma Sci Technol 5(6):2039–2050

    Google Scholar 

  • Vollath D (2007) Plasma synthesis of nanoparticles. Kona 25:39–55

    Google Scholar 

  • Vollath D, Sickafus KE (1992a) Synthesis of nanosized ceramic powders by microwave plasma reactions. Nanostruct Mater 1:427–437

    Google Scholar 

  • Vollath D, Sickafus KE (1993) Synthesis of nanosized ceramic nitride powders by micro-wave supported plasma reactions. Nanostruct Mater 2:451–456

    Article  CAS  Google Scholar 

  • Vollath D, Szabó DV (1994) Nanocoated particles: a special type of ceramic powder. Nanostruct Mater 8:927–938

    Article  Google Scholar 

  • Vollath D, Szabó DV (1998) Synthesis of nanocrystalline MoS2 and WS2 in microwave plasma. Mater Lett 35:236–244

    Article  CAS  Google Scholar 

  • Vollath D, Szabó VS (2000) Nanoparticles from compounds with layered structures. Acta Materialia 48:953–967

    Article  CAS  Google Scholar 

  • Vollath D, Szabó DV (2002) Synthesis of nanopowders by the microwave plasma process—basic considerations and perspectives for scaling-up. In: Choy KL (ed) Innovative processing of films and nanocrystalline powders. Imperial College Press, London

  • Vollath D, Szabó DV (2004) Synthesis and properties of nanocomposites. Adv Eng Mater 6:117–127

    Article  CAS  Google Scholar 

  • Vollath D, Szabó DV (2006) The microwave plasma process—a versatile process to synthesise nanoparticulate materials. J Nanopart Res 8:417–418

    Article  CAS  Google Scholar 

  • Vollath D, Szabó DV, Fuchs J (1999) Synthesis and properties of ceramic-polymer composites. Nanostruct Mater 12:433–438

    Article  Google Scholar 

  • Wang Y, Qin Y, Li G, Cui Z, Zhang Z (2005) One-step synthesis and optical properties of blue titanium suboxide nanoparticles. J Cryst Growth 282:402–406

    Article  CAS  Google Scholar 

  • Wang Z, Liu Y, Zeng X (2006) One-step synthesis of γ-Fe2O3 nanoparticles by laser ablation. Powder Technol 161:65–68

    Google Scholar 

  • Zak A, Feldman Y, Alperovich V, Rosentsveig R, Tenne R (2000) Growth mechanism of MoS2 fullerene-like nanoparticles by gas-phase synthesis. J Am Chem Soc 122:11108–11116

    Article  CAS  Google Scholar 

  • Ziemann PJ, Kittelson DB, McMurry PH (1996) Effects of particle shape and chemical composition on the electron impact charging properties of submicron inorganic particles. J Aerosol Sci 27:587–606

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Vollath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollath, D. Plasma synthesis of nanopowders. J Nanopart Res 10 (Suppl 1), 39–57 (2008). https://doi.org/10.1007/s11051-008-9427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9427-7

Keywords

Navigation