Skip to main content
Log in

Ag–Au alloy nanoparticles prepared by electro-exploding wire technique

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Homogenous Ag–Au alloy nanoparticles having an average size of 12 ± 2 nm were successfully prepared by the exploding wire technique comprising of a wire–plate system and using 12 V batteries. The X-ray photoelectron spectroscopy data reveal the formation of alloy nanoparticles with Ag80-Au20 composition, which agrees with the absorption data, obtained using UV-Visible spectroscopy. XPS also reveals a thin metal-oxide shell on the metallic alloy core. These alloy nanoparticles show visible fluorescence emission that was compared with the observed fluorescence from pure Ag nanoparticles. A mechanism for the observed fluorescence is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelsayed V, Saoud KM, El-Shall MS (2006) Vapor phase synthesis and characterization of bimetallic alloy and supported nanoparticle catalysts. J Nanopart Res 8:519–531

    Article  CAS  Google Scholar 

  • Agrawal VV, Mahalakshmi P, Kulkarni GU, Rao CNR (2006) Nanocrystalline films of Au–Ag, Au–Cu, and Au–Ag–Cu alloys formed at the organic-aqueous interface. Langmuir 22:1846–1851

    Article  CAS  Google Scholar 

  • Alqudami A, Annapoorni S (2005) Fluorescent silver nanoparticles via exploding wire technique. Pramana J Phys 65:815–819

    Article  Google Scholar 

  • Alqudami A, Annapoorni S, Lamba S, Kothari PC, Kotnala RK (2007) Magnetic properties of iron nanoparticles prepared by exploding wire technique. J Nanosci Nanotechnol 7:1898–1903

    Article  CAS  Google Scholar 

  • Barrie A, Christensen NE (1976) High-resolution X-ray photoemission spectra of silver. Phys Rev B 14:2442–2447

    Article  CAS  Google Scholar 

  • Bayler A, Schier A, Bowmaker GA, Schmidbaur H (1996) Gold is smaller than silver. Crystal structures of [Bis(trimesitylphosphine)gold(I)] and [Bis(trimesitylphosphine)silver(I)] Tetrafluoroborate. J Am Chem Soc 118:7006–7007

    Article  CAS  Google Scholar 

  • Chakraborty BR, Mohan P, Shivaprasad SM, Sharma DR, Anandan C, Gupta AC, Raychaudhuri AK (2000) Surface analytical facility at NPL, New Delhi. Curr Sci 78:1523–1527

    Google Scholar 

  • Chen DH, Chen JC (2002) Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12:1557–1562

    Article  CAS  Google Scholar 

  • Das D, Chatterjee PP, Manna I, Pabi SK (1999) A mechanism of enhanced diffusion kinetics in mechanical alloying of Cu-18 at.% Al by planetary ball milling. Scr Mater 41:861–866

    Article  CAS  Google Scholar 

  • Dulkeith E, Niedereichholz T, Klar TA, Feldmann J, von Plessen G, Gittins DI, Mayya KS, Caruso F (2004) Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 70:205424-1-4

    Google Scholar 

  • Fuggle JC, Martensson N (1980) Core-level binding energies in metals. J Electron Spectrosc Relat Phenom 21:275–281

    Article  CAS  Google Scholar 

  • Gangopadhyay P, Kesavamoorthy R, Bera S, Magudapathy P, Nair KGM, Panigrahi BK, Narasimhan SV (2005) Optical absorption and photoluminescence spectroscopy of the growth of silver nanoparticles. Phys Rev Lett 94:047403–1

    Article  CAS  Google Scholar 

  • Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking of gold nanoparticles. Chem Phys Lett 380:269–272

    Article  CAS  Google Scholar 

  • Hannemann S, Grunwaldt J-D, Krumeich F, Kappen P, Baiker A (2006) Electron microscopy and EXAFS studies on oxide-supported gold–silver nanoparticles prepared by flame spray pyrolysis. Appl Surf Sci 252:7862–7873

    Article  CAS  Google Scholar 

  • He ST, Xie SS, Yao JN, Gao HJ, Pang SJ (2002) Self-assembled two-dimensional superlattice of Au–Ag alloy nanocrystals. Appl Phys Lett 81:150–152

    Article  CAS  Google Scholar 

  • Hoflund GB, Hazos ZF, Salaita GN (2000) Surface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys Rev B 62:11126–11133

    Article  CAS  Google Scholar 

  • Hostetler MJ, Zhong CJ, Yen BKH, Anderegg J, Gross SM, Evans ND, Porter M, Murray RW (1998) Stable, monolayer-protected metal alloy clusters. J Am Chem Soc 120:9396–9397

    Article  CAS  Google Scholar 

  • Hubenthal F, Ziegler T, Hendrich C, Alschinger M, Trager F (2005) Tuning the surface plasmon resonance by preparation of gold-core/silver-shell and alloy nanoparticles. Eur Phys J D 34:165–168

    Article  CAS  Google Scholar 

  • Hwang YN, Jeong DH, Shin HJ, Kim D (2002) Femtosecond emission studies on gold nanoparticles. J Phys Chem B 106:7581–7584

    Article  CAS  Google Scholar 

  • Ievlev D, Rabin I, Schulze W, Ertl G (2000) Light emission in the agglomeration of silver clusters. Chem Phys Lett 328:142–146

    Article  CAS  Google Scholar 

  • Jiang Z, Yuan W, Pan H (2005) Luminescence effect of silver nanoparticle in water phase. Spectrochim. Acta A 61:2488–2494

    Google Scholar 

  • Kariuki NN, Luo J, Hassan SA, Lim IIS, Wang L, Zhong CJ (2006) Assembly of bimetallic gold-silver nanoparticles via selective interparticle dicarboxylate-silver linkages. Chem Mater 18:123–132

    Article  CAS  Google Scholar 

  • Kim MJ, Na HJ, Lee KC, Yoo EA, Lee M (2003) Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform. J Mater Chem 13:1789–1792

    Article  CAS  Google Scholar 

  • Lee KS, El-Sayed MS (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  Google Scholar 

  • Lee I, Han SW, Kim K (2001) Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys. Chem Commun 1782–1783

  • Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366

    Article  CAS  Google Scholar 

  • Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533

    Article  CAS  Google Scholar 

  • Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett 2:1235–1237

    Article  CAS  Google Scholar 

  • Moskovits M, Sloufova IS, Vlckova B (2002) Bimetallic Ag–Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J Chem Phys 116:10435–10446

    Article  CAS  Google Scholar 

  • Murray BJ, Newberg JT, Walter EC, Li Q, Hemminger JC, Penner RM (2005) Reversible resistance modulation in mesoscopic silver wires induced by exposure to amine vapor. Anal Chem 77:5205–5214

    Article  CAS  Google Scholar 

  • Papavassiliou GC (1976) Surface plasmons in small Au-Ag alloy particles. J Phys F: Metal Phys. 6:L103–105

    Article  CAS  Google Scholar 

  • Philip R, Kumar GR, Sandhyarani N, Pradeep T (2000) Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters. Phys Rev B 62:13160–13166

    Article  CAS  Google Scholar 

  • Rao GR (1998) Chemistry of bimetallic surfaces. Curr Sci 75:901–910

    CAS  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2006) A simple and ‘‘green’’ method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem 8:34–38

    Article  CAS  Google Scholar 

  • Ripken K (1972) The optical constants of Au, Ag and their alloys in the energy region from 2.4 to 4.4 eV. Z Phys 250:228–234

    Article  Google Scholar 

  • Sandhyarani N, Pradeep T (2000) Crystalline solids of alloy clusters. Chem Mater 12:1755–1761

    Article  CAS  Google Scholar 

  • Schmid AK, Bartelt NC, Hwang RQ (2000) Alloying at surfaces by the migration of reactive two-dimensional islands. Science 290:1561–1564

    Article  CAS  Google Scholar 

  • Sen P, Ghosh J, Kumar P, Alqudami Abdullah, Vandana (2003a) Process and apparatus for producing metal nanoparticles (Indian Patent 840/Del/03); (2004) (PCT International Appl. No PCT/IN2004/000067); (2004) (International Publication No. WO 2004/112997); (2007) (US Patent Appl. No 20070101823)

  • Sen P, Ghosh J, Alqudami Abdullah, Kumar P, Vandana (2003b) Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J Chem Sci 115:499–508

    Article  CAS  Google Scholar 

  • Sheng HW, Ma E (2001) Intermixing of a system with positive heat of mixing at high strain rates. Phys Rev B 63:224205-1-6

    Google Scholar 

  • Shibata T, Bunker BA, Zhang Z, Meisel D, Vardeman CF, Gezelter JD (2002) Size-dependent spontaneous alloying of Au-Ag nanoparticles. J Am Chem Soc 124:11989–11996

    Article  CAS  Google Scholar 

  • Shimizu Y, Ikeda K, Sawada S (2001) Spontaneous alloying in binary metal microclusters: a molecular dynamic study. Phys Rev B 64:075412-1-13

    Google Scholar 

  • Shon YS, Dawson GB, Porter M, Murray RW (2002) Monolayer-protected bimetal cluster synthesis by core metal galvanic exchange reaction. Langmuir 18:3880–3885

    Article  CAS  Google Scholar 

  • Singh AV, Bandgar BM, Kasture M, Prasad BLV, Sastry M (2005) Synthesis of gold, silver and their alloy nanoparticles using bovine serum albumin as foaming and stabilizing agent. J Mater Chem 15:5115–5121

    Article  CAS  Google Scholar 

  • Sloufova IS, Vlckova B, Bastl Z, Hasslett TL (2004) Bimetallic (Ag)Au nanoparticles prepared by the seed growth method: two-dimensional assembling, characterization by energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and surface enhanced Raman spectroscopy, and proposed mechanism of growth. Langmuir 20:3407–3415

    Article  Google Scholar 

  • Suyal G, Mennig M, Schmidt H (2003) Synthesis of nanocomposite thin films containing Ag–Au alloy colloids for wavelength tenability. J Mater Sci 38:1645–1651

    Article  CAS  Google Scholar 

  • Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 22:1179–1201

    Google Scholar 

  • Treguer M, Rocco F, Lelong G, Nestour AL, Cardinal T, Maali A, Lounis B (2005) Fluorescent silver oligomeric clusters and colloidal particles. Solid State Sci 7:812–818

    Article  CAS  Google Scholar 

  • Tyson CC, Bzowski A, Kristof P, Kuhn M, Sammynaiken R, Sham TK (1992) Charge redistribution in Au-Ag alloys from a local perspective. Phys Rev B 45:8924–8928

    Article  CAS  Google Scholar 

  • Vandana, Sen P (2005) Nanometre scale surface modification in a needle–plate exploding system. J Phys Condens Matter 17:5327–5334

    Article  CAS  Google Scholar 

  • Wagner CD, Riggs WM, Davis LE, Moulder JF (1979) In: Muilenberg GE (ed) Handbook of X-ray photoelectron spectroscopy, A reference book of standard data for use in X-ray photoelectron spectroscopy, Perkin-Elmer Corp., Minnesota, USA

  • Wang AQ, Chang CM, Mou CY (2005a) Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for co oxidation. J Phys Chem B 109:18860–18867

    Article  CAS  Google Scholar 

  • Wang AQ, Liu JH, Lin SD, Lin TS, Mou CY (2005b) A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J Catal 233:186–197

    Article  CAS  Google Scholar 

  • Yasuda H, Mori H (1992) Spontaneous alloying of zinc atoms into gold clusters and formation of compound clusters. Phys Rev Lett 69:3747–3750

    Article  CAS  Google Scholar 

  • Yasuda H, Mori H, Komatsu M, Takeda K (1993) Spontaneous alloying of copper atoms into gold clusters at reduced temperatures. J Appl Phys 73:1100–1103

    Article  CAS  Google Scholar 

  • Zheng J, Dickson RM (12002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Department of Science and Technology (DST), India for the funding through the project (SR/S5/NM-52/2002) from the Nanoscience and Technology Initiative programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Alqudami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alqudami, A., Annapoorni, S., Govind et al. Ag–Au alloy nanoparticles prepared by electro-exploding wire technique. J Nanopart Res 10, 1027–1036 (2008). https://doi.org/10.1007/s11051-007-9333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9333-4

Keywords

Navigation