Skip to main content
Log in

Synthesis and electrochemical properties of different sizes of the CuO particles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Well-dispersed cupric oxide (CuO) nanoparticles with the size from 10 to 100 nm were successfully synthesized by thermal decomposition of CuC2O4 precursor at 400 °C. The prepared CuO nanoparticles of different sizes used as anode materials for Li ion battery all exhibit high electrochemical capacity at the first discharge. However, with the particles size changing, an interesting phenomenon appears. That is, the larger size of the particles is, the discharge capacity of the first time smaller is, while that of the second time is larger. At the same time, the mechanism of the above phenomenon is discussed in this paper. Surprisingly, we have synthesized the copper nanoparticles with different sizes by the CuO of different sizes as the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chang SK, Kim HJ, Hong ST (2003) Alternative anode materials for lithium-ion batteries: a study of Ag3Sb. J Power Sources 119:64–68

    Article  CAS  Google Scholar 

  • Debart A, Dupont L, Poizot P, Leriche JB, Tarascon JM (2001) A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J Electrochem Soc 148(11):1266–1274

    Article  Google Scholar 

  • Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) The preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J Phys Chem B 108:5547–5551

    Article  CAS  Google Scholar 

  • Grugeon S, Laruelle S, Urbina RH, Dupont L, Poizot P, Tarascon JM (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148:285–292

    Article  Google Scholar 

  • Ha HW, Joeng KH, Kim K (2006) Effect of titanium substitution in layered LiNiO2 cathode material prepared by molten-salt synthesis. J Power Sources 161:606–611

    Article  CAS  Google Scholar 

  • Kalaiselvi N, Raajaraajan AV, Sivagaminathan B, Renganathan NG, Muniyandi N, Ragavan M (2003) Synthesis of optimized LiNiO2 for lithium ion batteries. Ionics 9:382–387

    Article  CAS  Google Scholar 

  • Kim TJ, Son D, Cho J, Park B (2006) Enhancement of the electrochemical properties of β-LiMnO2 cathodes at elevated temperature by lithium and fluorine additions. J Power Sources 154:268–272

    Article  CAS  Google Scholar 

  • Liu HS, Yang Y, Zhang JJ (2006) Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries. J Power Sources 162:644–650

    Article  CAS  Google Scholar 

  • Ng SH, Wang JZ, Wexler D, Konstantinov K, Guo ZP, Liu HK (2006) Highly reversible Lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew Chem Int Ed 45(41):6896–6899

    Article  CAS  Google Scholar 

  • Novak P (1985) CuO cathode in lithium cells-II. Reduction mechanism of CuO Electrochim. Acta 30:1687–1692

    CAS  Google Scholar 

  • Novak P, Klapste B, Podhajecky P (1985) CuO cathode in lithium cells: I. influence of the decomposition conditions of Cu(OH)2 on the properties of CuO. J Power Sources 15:101–108

    Article  CAS  Google Scholar 

  • Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69:212–221

    Article  CAS  Google Scholar 

  • Park MS, Yoon WY (2003) Characteristics of a Li/MnO2 battery using a lithium powder anode at high-rate discharge. J Power Sources 114:237–243

    Article  CAS  Google Scholar 

  • Podhajecky P (1985) The influence of preparation conditions on the electrochemical behaviour of CuO in a Li/CuO cell. J Power Sources 14:269–275

    Article  CAS  Google Scholar 

  • Podhajecky P, Scrosati B (1985) Copper oxide cathodes for lithium organic electrolyte batteries. J Power Sources 16:309–317

    Article  CAS  Google Scholar 

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  • Ritchie A, Howard W (2006) Recent developments and likely advances in lithium-ion batteries. J Power Sources 162:809–812

    Article  CAS  Google Scholar 

  • Scrosati B (1995) Challenge of portable power. Nature 373(16):557–558

    Article  CAS  Google Scholar 

  • Shembel E, Apostolova R, Nagirny V, Kirsanova I, Grebenkin Ph, Lytvyn P (2005) Electrolytic molybdenum oxides in lithium batteries. J Solid State Electrochem 9:96–105

    Article  CAS  Google Scholar 

  • Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  • Wang ZX, Chen LQ (2005) Solvent storage-induced structural degradation of LiCoO2 for lithium ion batteries. J Power Sources 146:254–258

    Article  CAS  Google Scholar 

  • Wang X, Song JM, Gao LS, Jin JY, Zheng HG, Zhang ZD (2005) Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres. Nanotechnology 16:37–39

    Article  CAS  Google Scholar 

  • Yuan L, Guo ZP, Konstantinov K, Liu HK, Dou SX (2006) Nano-structured spherical porous SnO2 anodes for lithium-ion batteries. J Power Sources 159:345–348

    Article  CAS  Google Scholar 

  • Zhang J, Xie S, Wei X, Xiang YJ, Chen CH (2004) Lithium insertion in naturally surface-oxidized copper. J Power Sources 137:88–92

    Article  CAS  Google Scholar 

  • Zhang DW, Yi TH, Chen CH (2005) Cu nanoparticles. derived from CuO electrodes in lithium cells. Nanotechnology 16:2338–2341

    Article  CAS  Google Scholar 

  • Zhang SS, Xu K, Jow TR (2006) Study of the charging process of a LiCoO2-based Li-ion battery. J Power Sources 160:1349–1354

    Article  CAS  Google Scholar 

  • Zhou F, Zhao XM, Zheng HG, Shen T, Tang CM (2005a) Low-Temperature Refluxing Synthesis of Nanosized LiMn2O4 Cathode Materials. Chem Lett 34:1270–1271

    Article  CAS  Google Scholar 

  • Zhou F, Zhao XM, Zheng HG, Shen T, Tang CM (2005b) Synthesis and electrochemical properties of ZnO 3D nanostructures. Chem Lett 34:1114–1115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huagui Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhang, D., Ni, X. et al. Synthesis and electrochemical properties of different sizes of the CuO particles . J Nanopart Res 10, 839–844 (2008). https://doi.org/10.1007/s11051-007-9320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9320-9

Keywords

Navigation