Journal of Nanoparticle Research

, Volume 9, Issue 6, pp 1145–1151 | Cite as

Size effect of gold nanoparticles on the electrocatalytic oxidation of carbon monoxide in alkaline solution

  • Dongsheng Geng
  • Gongxuan LuEmail author
Brief communication


This paper describes preliminary findings of Au nanoparticle on glassy carbon (GC) electrodes for electro-oxidation of carbon monoxide in basic conditions. Electrochemical cyclic voltammetric results showed that CO oxidation simultaneously occurred in the anodic and cathodic sweeps during one cycle, and CO electro-oxidation activity was remarkably different in the anode for the different sized Au nanoparticles. The ultrafine catalyst metal particles (2 and 6 nm Au) were more active compared to the larger ones (12, 24 and 41 nm Au). The dependence of the activity on the particle size can be explained in terms of their effect on the number of active sites and the different surface gold oxide species.


size effect nanoparticles electrocatalytic electro-oxidation catalyst colloids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The 973 (G20000264) Research Fund is acknowledged for its support of the research.


  1. Brown K.R., Fox A.P., Natan M.J. 1996 Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J. Am. Chem. Soc. 118(5): 1154–1157CrossRefGoogle Scholar
  2. Burke L.D., Nugent P.F. 1997 The electrochemistry of gold: I The redox behaviour of the metal in aqueous media. Gold Bull. 30(2): 43–53Google Scholar
  3. Burke L.D., Nugent P.F. 1998 The electrochemistry of gold: II The electrocatalytic behaviour of the metal in aqueous media. Gold Bull. 31(2): 39–50Google Scholar
  4. Cambell C.T., Parker S.C., Starr D.E. 2002 The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298: 811–814CrossRefGoogle Scholar
  5. Cherstiouk O.V., Simonov P.A., Savinova E.R. 2003 Model approach to evaluate particle size effects in electrocatalysis: preparation and properties of Pt nanoparticles supported on GC and HOPG. Electrochim. Acta 48(25–26): 3851–3860CrossRefGoogle Scholar
  6. Frelink T., Visscher W., van Veen J.A.R. 1995 Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. J. Electroanal. Chem. 382(1–2): 65–72CrossRefGoogle Scholar
  7. Frens G. 1973 Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241: 20–22Google Scholar
  8. Haruta M. 1997 Size- and support-dependency in the catalysis of gold. Catal. Today 36(1): 153–166CrossRefGoogle Scholar
  9. Haruta M., Yamada N., Kobayashi T., Iijima S. 1989 Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 115(2): 301–309CrossRefGoogle Scholar
  10. Jaramillo T.F., Baeck S.H., Roldan Cuenya B., Mcfarland E.W. 2003 Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J. Am. Chem. Soc. 125(24): 7148–7149CrossRefGoogle Scholar
  11. Jarvi T.D., Sriramulu S., Stuve E.M. 1997 Potential dependence of the yield of carbon dioxide from electrocatalytic oxidation of methanol on platinum (100). J. Phys. Chem. B. 101(19): 3649–3652CrossRefGoogle Scholar
  12. Jin Y., Shen Y., Dong S. 2004 Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for oxygen reduction. J. Phys. Chem. B. 108(24): 8142–8147CrossRefGoogle Scholar
  13. Lou, Y., M.M. Maye, L. Han, J. Luo & C.J. Zhong, 2001. Gold–platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation. Chem. Commun. 5, 473–474Google Scholar
  14. Maillard F., Eikerling M., Cherstiouk O.V., Schreier S., Savinova E., Stimming U. 2004 Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility. Faraday Discuss. 125: 357–377CrossRefGoogle Scholar
  15. Maye M.M., Lou Y., Zhong C.J. 2000 Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation. Langmuir 16(19): 7520–7523CrossRefGoogle Scholar
  16. Min M.-K., Cho J., Cho K., Kim H. 2000 Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta 45(25–26): 4211–4217CrossRefGoogle Scholar
  17. Möller H., Pistorius P.C. 2004 The electrochemistry of gold–platinum alloys. J. Electroanal. Chem. 570(2): 243–255CrossRefGoogle Scholar
  18. Roldan Cuenya B., Baeck S.H., Jaramillo T.F., Mcfarland E.W. 2003 Size- and support-dependent electronic and catalytic properties of Au0/Au3+ nanoparticles synthesized from block copolymer micelles. J. Am. Chem. Soc. 125(42): 12928–12934CrossRefGoogle Scholar
  19. Sau T.K., Pal A., Pal T. 2001 Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B. 105(38): 9266–9272CrossRefGoogle Scholar
  20. Takasu, Y., H. Itaya, T. Iwazaki, R. Miyoshi, T. Ohnuma, W.␣Sugimoto & Y. Murakami, 2001. Size effects of ultrafine Pt–Ru particles on the electrocatalytic oxidation of methanol. Chem. Commun. 4, 341–342Google Scholar
  21. Tateishi N., Nishimura K., Yahikozawa K., Nakagawa M., Yamada M., Takasu Y. 1993 Electrocatalytic properties of ultrafine gold particles towards oxidation of acetaldehyde and ethanol. J. Electroanal. Chem. 352(1–2): 243–252CrossRefGoogle Scholar
  22. Valden M., Lai X., Goodman D.W. 1998 Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281: 1647–1650CrossRefGoogle Scholar
  23. Wasmus S., Kuever A. 1999 Methanol oxidation and direct methanol fuel cells: A selective review. J. Electroanal. Chem. 461(1–2): 14–31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.State Key Laboratory for Oxo Synthesis and Selective OxidationLanzhou Institute of Chemical Physics, The Chinese Academy of SciencesLanzhouP.R. China
  2. 2.Graduate University of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations