Skip to main content
Log in

Formation and encapsulation of gold nanoparticles using a polymeric amine reducing agent

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report on the use of poly(allylamine) hydrochloride (PAH) as a reducing agent for the controlled formation of gold nanoparticles (AuNPs) in the size range of 5–50 nm. The formation of AuNPs using this polymer matrix allows for the AuNPs to be imbedded in the polymer matrix, once formed. The kinetics of AuNP formation are shown to be pseudo first-order in [HAuCl4] at room temperature. The kinetics of AuNP formation are controlled by the ratio of reducing agent to HAuCl4 as well as the overall concentration of the PAH and HAuCl4. Additionally, at low PAH:HAuCl4 mole ratios, the plasmon resonance wavelength can be controlled through the ratio of the reactants. This plamson resonance shift is shown to be related to AuNP size by means of TEM imaging data on the AuNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson M., Fromell K., et al. (2005). Characterization of surface-modified nanoparticles for in vivo biointeraction. A sedimentation field flow fractionation study. Anal. Chem. 77(17):5488–5493

    Article  CAS  Google Scholar 

  • Aslan K., Lakowicz J.R., et al. (2005). Nanogold plasmon resonance-based glucose sensing. 2. Wavelength-ratiometric resonance light scattering. Anal. Chem. 77(7):2007–2014

    Article  CAS  Google Scholar 

  • Bao C., Jin M., et al. (2003). Hyperbranched poly(amine-ester) templates for the synthesis of Au nanoparticles. Mater. Chem. Phys. 82(3):812–817

    Article  CAS  Google Scholar 

  • Bhargava S.K., Booth J.M., et al. (2005). Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 21(13):5949–5956

    Article  CAS  Google Scholar 

  • Brust M., Fink J., et al. (1995). Synthesis and reactions of functionalized gold nanoparticles. J. Chem. Soc., Chem. Commun. (16):1655–1656

    Article  Google Scholar 

  • Brust M., Walker M., et al. (1994). Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. (7):801–802

    Article  Google Scholar 

  • Chen S.-J., Chang H.-T. (2004). Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal. Chem. 76(13):3727–34

    Article  CAS  Google Scholar 

  • Cho J., Caruso F., (2005). Investigation of the interactions between ligand-stabilized gold nanoparticles and polyelectrolyte multilayer films. Chem. Mater. 17(17):4547–4553

    Article  CAS  Google Scholar 

  • Dos Santos D.S., Jr., Goulet P.J.G., et al. (2004). Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced raman scattering. Langmuir 20(23):10273–10277

    Article  CAS  Google Scholar 

  • Esumi K., Suzuki A., et al. (2000). Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver. Langmuir 16(6):2604–2608

    Article  CAS  Google Scholar 

  • Faulds K., Littleford R.E., et al. (2004). Comparison of surface-enhanced resonance raman scattering from unaggregated and aggregated nanoparticles. Anal. Chem. 76(3):592–598

    Article  CAS  Google Scholar 

  • Frederix F., Friedt J.-M. et al. (2003). Biosensing based on light absorption of nanoscaled gold and silver particles. Anal. Chem. 75(24):6894–6900

    Article  CAS  Google Scholar 

  • Grate J.W., Nelson David A. et al. (2003). Sorptive behavior of monolayer-protected gold nanoparticle films: implications for chemical vapor sensing. Anal. Chem. 75(8):1868–1879

    Article  CAS  Google Scholar 

  • Grohn F., Bauer B.J., et al. (2001). Nanoparticle formation within dendrimer-containing polymer networks: route to new organic-inorganic hybrid materials. Polym. Mater. Sci. Eng. 84:78–79

    CAS  Google Scholar 

  • Gross G.M., Nelson D.A., et al. (2003). Monolayer-protected gold nanoparticles as a stationary phase for open tubular gas chromatography. Anal. Chem. 75(17):4558–4564

    Article  CAS  Google Scholar 

  • Grubisha D.S., Lipert R.J., et al. (2003). Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced raman scattering and immunogold labels. Anal. Chem. 75(21):5936–5943

    Article  CAS  Google Scholar 

  • Hirsch L.R., Stafford R.J., et al. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100(23):13549–13554

    Article  CAS  Google Scholar 

  • Hostetler M.J., Wingate J.E., et al. (1998). Alkanethiolate gold cluster molecules with core diameters from 1.4 to 5.2 nanometers: core and monolayer properties as a function of core size. Langmuir 14(1):17–30

    Article  CAS  Google Scholar 

  • Hussain I., Brust M., et al. (2003). Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19(11):4831–4835

    Article  CAS  Google Scholar 

  • Iwamoto M., Kuroda K., et al. (2003). Production of gold nanoparticles-polymer composite by quite simple method. Eur. Phys. J. D: Atomic Mol. Opt. Phys. 24(1–3):365–367

    Article  CAS  Google Scholar 

  • Kim Y.-G., Garcia-Martinez J.C., et al. (2005). Electrochemical properties of monolayer-protected au and pd nanoparticles extracted from within dendrimer templates. Langmuir 21(12):5485–5491

    Article  CAS  Google Scholar 

  • Krasteva N., Besnard I., et al. (2002). Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications. Nano Lett. 2(5):551–555

    Article  CAS  Google Scholar 

  • Leff D.V., Ohara P.C., et al. (1995). Thermodynamic control of gold nanocrystal size: experiment and theory. J. Phys. Chem. 99(18):7036–7041

    Article  CAS  Google Scholar 

  • Loo C., Lin A., et al. (2004). Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3(1):33–40

    CAS  Google Scholar 

  • Loo C., Lowery A., et al. (2005). Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5(4):709–711

    Article  CAS  Google Scholar 

  • Matsui J., Akamatsu K., et al. (2004). Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Anal. Chem. 76(5):1310–1315

    Article  CAS  Google Scholar 

  • Mayer A.B.R., Mark J.E. (1998). Colloidal gold nanoparticles protected by water-soluble homopolymers and random copolymers. Eur. Polym. J. 34(1):103–108

    Article  CAS  Google Scholar 

  • Murillo, L.E., O. Viera, E. Vicuna, J.G. Briano, M. Castro, Y. Ishakawa, R. Izarry & L. Sola, 2002. Growth kinetics of Gold nanoparticles. Nanotech 2002, Vol. 2. Technical proceedings of the 2002 international conference on computational nanoscience and nanotechnology, pp. 435–438

  • Nath N., Chilkoti A. (2004). Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal. Chem. 76(18):5370–5378

    Article  CAS  Google Scholar 

  • Newman J.D.S., Blanchard G.J. (2006). Formation of gold nanoparticles using amine reducing agents. Langmuir 22(13):5882–5887

    Article  CAS  Google Scholar 

  • Niidome T., Nakashima K., et al. (2004). Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem. Commun. (Cambridge, United Kingdom)(17):1978–1979

    Article  Google Scholar 

  • O’Neal D.P., Hirsch L.R., et al. (2004). Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209(2):171–176

    Article  CAS  Google Scholar 

  • Rojo J., Diaz V., et al. (2004). Gold glyconanoparticles as new tools in antiadhesive therapy. ChemBioChem 5(3):291–297

    Article  CAS  Google Scholar 

  • Selvakannan P.R., Mandal S., et al. (2004). Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J. Colloid Interf. Sci. 269(1):97–102

    Article  CAS  Google Scholar 

  • Sonnichsen C., Geier S., et al. (2000). Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 77(19):2949–2951

    Article  CAS  Google Scholar 

  • Srivastava S., Frankamp B.L., et al. (2005). Controlled plasmon resonance of gold nanoparticles self-assembled with PAMAM dendrimers. Chem. Mater. 17(3):487–490

    Article  CAS  Google Scholar 

  • Sun X., Dong S., et al. (2004). One-step synthesis and characterization of polyelectrolyte-protected gold nanoparticles through a thermal process. Polymer 45(7):2181–2184

    Article  CAS  Google Scholar 

  • Tokareva I., Minko S., et al. (2004). Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 126(49):15950–15951

    Article  CAS  Google Scholar 

  • Turkevich J., P.C. Stevenson, et al., 1951. The nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society No. 11, 55–75

  • Zhang P., Sham T.K. (2002). Tuning the electronic behavior of Au nanoparticles with capping molecules. Appl. Phys. Lett. 81(4):736–738

    Article  CAS  Google Scholar 

  • Zhang Z.-F., Cui H., et al. (2005). Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal. Chem. 77(10):3324–3329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the U. S. Department of Energy for support of this work through Grant DEFG0299ER15001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Blanchard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, J.D.S., Blanchard, G.J. Formation and encapsulation of gold nanoparticles using a polymeric amine reducing agent. J Nanopart Res 9, 861–868 (2007). https://doi.org/10.1007/s11051-006-9145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9145-y

Keywords

Navigation