Skip to main content
Log in

One-step synthesis of colloidal Mn3O4 and γ-Fe2O3 nanoparticles at room temperature

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A facile room-temperature synthesis has been developed to prepare colloidal Mn3O4 and γ-Fe2O3 nanoparticles (5 to 25 nm) by an ultrasonic-assisted method in the absence of any additional nucleation and surfactant. The morphology of the as-prepared samples was observed by transmission electron microscopy. High-resolution transmission electron microscopy observations revealed that the as-synthesized nanoparticles were single crystals. The magnetic properties of the samples were investigated with a superconducting quantum interference device magnetometer. The possible formation process has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldi M., Finocchio E., Milella F., Busca G. (1998). Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Appl. Catal. B: Environmental 16:43–51

    Article  CAS  Google Scholar 

  • Borovik-Romanov A.S., Orlova M.P. (1957). Magnetic properties of manganese oxides at temperatures from 20 to 300 K, Zhur. Eksptl. i Teoret. Fiz. (J. Exptl. Theoret. Phys.) 32:1255–1255

    CAS  Google Scholar 

  • Cao X., Prozorov R., Koltypin Yu., Kataby G., Felner I., Gedanken A. (1997) . J. Mater. Res. 12:402

    CAS  Google Scholar 

  • De Faria D.L.A., Venancio Silva S., De Oliveira M.T. (1997). Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28:873–878

    Article  CAS  Google Scholar 

  • Demazeau G. (1999). Solvothermal processes: a route to the stabilization of new materials. J. Mater. Chem. 9:15–18

    Article  CAS  Google Scholar 

  • Feldmann C., Jungk H.-O. (2001). Polyol-mediated preparation of nanoscale oxide particles. Angew. Chem. Int. Ed. 40:359–362

    Article  CAS  Google Scholar 

  • Feltin N., Pileni M.P. (1997). New technique for synthesizing iron ferrite magnetic nanosized particles. Langmuir 13:3927–3933

    Article  CAS  Google Scholar 

  • Finocchio E., Busca G. (2001). Characterization and hydrocarbon oxidation activity of coprecipitated mixed oxides Mn3O4/Al2O3. Catal. Today 70:213–225

    Article  CAS  Google Scholar 

  • Grootendorst E.J., Verbeek Y., Ponce V. (1995). The role of the Mars and van Krevelen mechanism in the selective oxidation of nitrosobenzene and the deoxygenation of nitrobenzene on oxidic catalysts. J. Catal. 157:706–712

    Article  CAS  Google Scholar 

  • Hyeon T., Lee S.S., Park J., Chung Y., Na H.B. (2001). Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123:12798–12801

    Article  CAS  Google Scholar 

  • Kijlstra W.S., Daamen J., Vandegraaf J.M., Vanderlinden B., Poels E.K., Bliek A. (1996). Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3. Appl. Catal. B: Environmental 7:337

    Article  CAS  Google Scholar 

  • Kim D.K., Zhang Y., Voit W., Rao K.V., Muhammed M. (2001). Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225:30–36

    Article  CAS  Google Scholar 

  • Kroll E., Winnik F.M., Ziolo R.F. (1996). In situ preparation of nanocrystalline γ-Fe2O3 in iron(II) cross-linked alginate gels. Chem. Mater. 8:1594–1596

    Article  CAS  Google Scholar 

  • Kumar R.V., Koltypin Yu, Xu X.N., Yeshurun Y., Gedanken A., Felner I. (2001) . J. Appl. Phys. 89:6324

    Article  CAS  Google Scholar 

  • Kumar V.G., Aurbuch D., Gedanken A. (2003). Ultrason. Sonochem. 10:17

    Article  Google Scholar 

  • Liu Y., Yang J.H., Yang W.S., Xie T.F., Bai Y.B., Li T.J. (2000). Influence of hydrothermal temperature on structures and photovoltaic properties of SnO2 nanoparticles. J. Nanoparticle Res. 2:309–313

    Article  CAS  Google Scholar 

  • Mendelovici E., Sagarzazu A. (1988). Thermal synthesis of hausmanite via manganese alkoxide. Thermochim. Acta 133:93

    Article  CAS  Google Scholar 

  • Murray C.B., Norris D.J., Bawendi M.G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715

    Article  CAS  Google Scholar 

  • Park S.-J., Kim S., Lee S., Khim Z.G., Char K., Hyeon T. (2000). Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122:8581–8582

    Article  CAS  Google Scholar 

  • Pekarek K.J., Jacob J.S., Mathiowitz E. (1994). Double-walled polymer microspheres for controlled drug release, Nature 367:258–260

    Article  CAS  Google Scholar 

  • Perez-Maqueda L.A., Wang L., Matijevic E. (1998). Nanosize indium hydroxide by peptization of colloidal precipitates. Langmuir 14:4397–4401

    Article  CAS  Google Scholar 

  • Pileni M.P. (1997). Nanosized particles made in colloidal assemblies. Langmuir 13:3266–3276

    Article  CAS  Google Scholar 

  • Pinna N., Grancharov S., Beato P., Bonville P., Antonietti M., Niederberger M. (2005). Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 17:3044–3049

    Article  CAS  Google Scholar 

  • Prozorov T., Prozorov R., Koltypin Yu, Felner I., Gedanken A. (1998) . J. Phys. Chem. B 102:10165

    Article  CAS  Google Scholar 

  • Ramachandran R., Rashmi (2002). Preparation and characterization of manganous manganic oxide (Mn3O4). J. Mater. Sci.: Mater. Electron. 13:257–262

    Article  CAS  Google Scholar 

  • Rockenburger J., Scher E.C., Alivisatos A.P. (1999). A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc. 121:11595–11596

    Article  Google Scholar 

  • Roco M.C. (1999). Nanoparticles and nanotechnology research. J. Nanoparticles Res. 1:1–6

    Article  Google Scholar 

  • Sanchez L., Farcy J., Tirado J. (1996). Low-temperature mixed spinel oxides as lithium insertion compounds. J. Mater. Chem. 6:37

    Article  CAS  Google Scholar 

  • Sangregorio C., Galeotti M., Bardi U., Baglioni P. (1996). Synthesis of Cu3Au nanocluster alloy in reverse micelles. Langmuir 12:5800–5802

    Article  CAS  Google Scholar 

  • Sargi N., Vauthier C., Didierlaurent A., Thao T.X., Devissaguet J.-P., Couvreur P. (1994). Adsorption of allergen extracts onto colloidal particles. J. Colloid Interface Sci. 166:294–301

    Article  CAS  Google Scholar 

  • Seo W.S., Jo H.H., Lee K., Kim B., Oh S.J., Park J.T. (2004). Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed. 43:1115–1117

    Article  CAS  Google Scholar 

  • Shafi K.V.P.M., Ulman A., Yan X.Z., Yang N.L., Estournes C., White H., Rafailovich M. (2001). Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17:5093–5097

    Article  CAS  Google Scholar 

  • Shebanova O.N., Lazor P. (2003). Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174:424–430

    Article  CAS  Google Scholar 

  • Shomate C.H. (1943). Heats of formation of manganomanganic oxide and manganese dioxide. J. Am. Chem. Soc. 65:786

    Google Scholar 

  • Southard J.C., Moore G.E. (1942). High-temperature heat content of Mn3O4, MnSiO3 and Mn3C. J. Am. Chem. Soc. 64:1769–1770

    Article  CAS  Google Scholar 

  • Stobbe E.R., De Boer B.A., Geus J.W. (1999). The reduction and oxidation behaviour of manganese oxides. Catal. Today 47:161–176

    Article  CAS  Google Scholar 

  • Stouwdam J.W., van Veggel F.C.J.M. (2002). Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2:733–737

    Article  CAS  Google Scholar 

  • Sun S.H., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G.X. (2004). Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 126:273–279

    Article  CAS  Google Scholar 

  • Suslick K.S. (1988). Ultrasound: Its Chemical, Physical and Biological Effect. Weinheim, Germany, VCH

    Google Scholar 

  • Suslick K.S., Cichowlas A.A., Grinstaff M.W. (1991) . Nature 353:414

    Article  CAS  Google Scholar 

  • Takatori K., Tani T., Watanabe N., Kamiya N. (1999). Preparation and characterization of nano-structured ceramic powders synthesized by emulsion combustion method. J. Nanoparticles Res. 1:197–204

    Article  CAS  Google Scholar 

  • Tejada J., Zhang X.X., Balcells LI. (1993). Nonthermal viscosity in magnets: Quantum tunneling of the magnetization. J. Appl. Phys. 73:6709

    Article  CAS  Google Scholar 

  • Ursu I., Alexandrescu R., Mihailescu I.N., Morjan I., Jianu V., Popescu C. (1986). Kinetic evolution during the laser/thermal preparation of Mn3O4 from MnCO3. J. Phys. B 19:L825

    Article  CAS  Google Scholar 

  • Yin M., O’Brien S. (2003). Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 125:10180–10181

    Article  CAS  Google Scholar 

  • Yu H., Gibbons P.C., Kelton K.F., Buhro W.E. (2001). Heterogeneous seeded growth: A potentially general synthesis of monodisperse metallic nanoparticles. J. Am. Chem. Soc. 123:9198–9199

    Article  CAS  Google Scholar 

  • Yu J.C., Xu A., Zhang L., Song R., Wu L. (2004). Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. J. Phys. Chem. B 108:64–70

    Article  CAS  Google Scholar 

  • Zhang L., Papaefthymiou G.C., Ying J.Y. (2001). Synthesis and properties of γ-Fe2O3 nanoclusters within mesoporous aluminosilicate matrices. J. Phys. Chem. B 105:7414–7423

    Article  CAS  Google Scholar 

  • Zhang W.X., Wang C., Zhang X.M., Xie Y., Qian Y.T. (1999). Low temperature synthesis of nanocrystalline Mn3O4 by a solvothermal method. Solid State Ionics 117:331–335

    Article  CAS  Google Scholar 

  • Zhang Y.C., Qiao T., Hu X.Y. (2004). Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires. J. Solid State Chem. 177:4093–4097

    Article  CAS  Google Scholar 

  • Zwinkels M.F.M., Jaras S.G., Menon P.G., Griffin T.A. (1993). Catalytic materials for high-temperature combustion. Catal. Rev. Sci. Eng. 35:319–358

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the National Natural Science Foundation of China, the 973 Projects of China and the Program for New Century Excellent Talents in university (NCET) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaibin Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, S., Tang, K., Fang, Z. et al. One-step synthesis of colloidal Mn3O4 and γ-Fe2O3 nanoparticles at room temperature. J Nanopart Res 9, 833–840 (2007). https://doi.org/10.1007/s11051-006-9131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9131-4

Keywords

Navigation