Skip to main content
Log in

Alumina nanotubes: preparation and textural, structural and morphological characterization

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Alumina nanotube was synthesized by hydrolysis of aluminum isopropoxide followed by gelation and drying under hypercritical condition. The influence of temperature on the structural, textural, and morphological properties of the material was studied by powder X-ray diffraction, infrared spectroscopy, nitrogen adsorption, thermal analysis, scanning and transmission electronic microscopy. The as-prepared alumina (300°C) was formed by boehmite crystallites. Its structure collapsed after heating (500–1200 °C) yielding γ, δ and θ alumina nanophases. The aerogel surface area changed from 254 to 99 m2 g−1 in this heating range. The formation of alumina nanotubes was verified by transmission microscopy analysis at the heating range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brinker C.J. & G.W. Scherer, 1990. Sol–Gel Science. The Physics and Chemistry of Sol–Gel Processing. Academic Press, New York

  • Brinker C. J., (1996). Curr. Op. Sol. Sta. Mater. Sci. 1: 798–805

    Article  CAS  Google Scholar 

  • Cullity B., 1967. Elements of X-ray Diffraction. AWPC Inc

  • Frazee J W , Harris T.M. (2001). J. Non-Cryst Solids 285: 84–89

    Article  CAS  Google Scholar 

  • French R H, Mullejans H., Jones D.J.J. (1998). J. Am. Cer. Soc. 81: 2549–2557

    Article  CAS  Google Scholar 

  • Gregg S.J. & K.S.W. Sing, 1982. Adsorption, Surface Area and Porosity. 2nd (edn), San Diego, CA: Academic Press Inc

  • Horiuch T., Osaki T., Sugiyama T., Masuda H., Horio M., Suzuki K., Mori T., Sago T.J. (1994). J. Chem. Soc. Faraday Trans. 90: 2573–2578

    Article  CAS  Google Scholar 

  • Iijima S. (1991). Nature 354: 56–58

    Article  CAS  Google Scholar 

  • Janosovits U., Ziegler G., Scharf U., Wokaun A. (1997). J. Non-Cryst Solids 210: 1–13

    Article  CAS  Google Scholar 

  • Kakos J., Baca L.(2001). J Sol-Gel Sci Tech 21: 167–172

    Article  CAS  Google Scholar 

  • Kingery W. D., Bowen H.K., Uhlmann R.D. (1976). Introduction to Ceramics 2nd ed. John Wiley and Sons, New York

    Google Scholar 

  • Krokidis X., Raybaud P., Gobichon A.E., Rebours B., Euzen P., Toulhoat H. (2001). J. Phys. Chem. B 105: 5121–5130

    Article  CAS  Google Scholar 

  • Linnolahti M., Pakkanem T.A. (2004). Inorg. Chem. 43: 1184–1189

    Article  CAS  Google Scholar 

  • Mizushima Y, Hori M.J. (1994). J. Non-Cryst. Solids 167: 1–8

    Article  CAS  Google Scholar 

  • Mo C., Yuan Z., Zhang L., Xie C. (1993). Nanostruct. Mater 2:47–54

    Article  CAS  Google Scholar 

  • Ozao R., Yoshida H., Inada T. (2002). J. Therm. Anal. Cal. 69: 925–931

    Article  CAS  Google Scholar 

  • Paglia G., Buckley C.E., Rohl A.L., Hart R.D., Winter K., Studer A.J., Hunter B.A., Hanna J.V. (2004). Chem. Mater. 16: 220–236

    Article  CAS  Google Scholar 

  • Palkar V.R. (1999). Nanostruct. Mater. 11: 369–374

    Article  CAS  Google Scholar 

  • Pierre A.C., Elaloui E., Pajonk G.M. (1998). Langmuir 14: 66–73

    Article  CAS  Google Scholar 

  • Poco J.F., Satcher J.H., Jr., Hrubesh L.W. (2001). J. Non-Cryst. Solids 285: 57–63

    Article  CAS  Google Scholar 

  • Pu L., Bao X., Zou J., Feng D. (2001). Angew. Chem. Int. ed. 40: 1490–1493

    Article  CAS  Google Scholar 

  • Rao G.V.R., Venkadesan S., Saraswati V. (1989). J. Non-Cryst. Solids 111: 103–112

    Article  CAS  Google Scholar 

  • Ribeiro R.A., Silva G.G., Mohallem N.D.S. (2001). J. Phys. Chem. Solids 62: 857–864

    Article  CAS  Google Scholar 

  • Shek C.H., Lai J.K.L., Gu T.S., Lin G.M.(1997). Nanostruct. Mater. 8: 605–610

    Article  CAS  Google Scholar 

  • Suh D.J., Park T.J., Kim J.H., Kim K.L. (1997). J. Chem. Mater. 9: 1903–1905

    Article  CAS  Google Scholar 

  • Walendziewski J., Stolarski M. (2000). React. Kinet. Catal. Lett. 71: 201–207

    Article  CAS  Google Scholar 

  • Wang J.A., Boklhimi X., Morales A., Novaro O., López T. , Gómez R. (1999). J. Phys. Chem. B 103: 299–303

    Article  CAS  Google Scholar 

  • Wefers K. (1990). Science And Technology Handbook: Hart 1 D Ed. The American Ceramic Society, Westerville Ohio

    Google Scholar 

  • Wilson S. J., Mac Connell J.D.C.(1980). J. Sol. State Chem. 34:315–322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support by the CNPq, FAPEMIG, and to LNLS for the use of the high resolution transmission electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelcy Della Santina Mohallem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diniz, C.F., Balzuweit, K. & Mohallem, N.D.S. Alumina nanotubes: preparation and textural, structural and morphological characterization. J Nanopart Res 9, 293–300 (2007). https://doi.org/10.1007/s11051-005-9039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9039-4

Keywords

Navigation