Skip to main content
Log in

Construction and Application of a UHV Compatible Cluster Deposition System

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The design and operation of a new UHV-compatible atomic cluster deposition system is described. The design is optimised for high cluster fluxes and for the production of cluster-assembled nano-devices. One key feature of the system is a high degree of flexibility, including interchangeable sputtering and inert gas aggregation sources, and two kinds of mass spectrometer, which allow both characterisation of the cluster size distribution and deposition of mass-selected clusters. Another key feature is that clusters are deposited onto electrically contacted lithographically defined devices mounted on an UHV-compatible cryostat cold finger, allowing deposition at room temperature as well as cryogenic and elevated temperatures. In-situ electrical characterisation of cluster-assembled devices can then be performed in the temperature range 1.2--75 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker S.H., Thornton S.C., Keen A.M., Preston T.I., Norris C., Edmonds K.W., Binns C.(1997). The construction of a gas aggregation source for the preparation of mass-selected ultrasmall metal particles. Rev. Sci. Instrum. 68 (4): 1853--857

    Article  CAS  Google Scholar 

  • Davies J.T. and Rideal E.K. (1961). Interfacial Phenomena. New York, Academic, 441

    Google Scholar 

  • de Heer W.A. (1993). The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 65: 611--76

    Article  Google Scholar 

  • Denby P.M., Eastham D.A. (2001). Efficient technique for producing high-brightness, size-selected cluster beams. Appl. Phys. Lett. 79 (15): 2477--479

    Article  CAS  Google Scholar 

  • Dunbar, A.D.F., J. G. Partridge, M. Schulze, & S.A., Brown, 2004. Percolating films of Bi, Ag and Sb clusters: Experimental determination of the exponent for conductivity. Submitted to Europ. Phys. J.D.

  • Flüli, M., 1989. Observation des Structures Anormales de Petites Particules d’Or et d’Argent par Microscopie Electronique à Haute Résolution et Diffraction d’Electrons par un Jet d’Agrégets d’Argent. Ph.D. thesis, Éole Polytechnique Fédérale De Lausanne

  • Ganteför G., Siekmann H.R., Lutz H.O., Meiwes-Broer K.H. (1990). Pure metal and metal-doped rare-gas clusters grown in a pulsed ARC cluster ion source. Chem. Phys. Lett. 165: 293--96

    Article  Google Scholar 

  • Goldby I.M., von Issendorff B., Kuipers L., Palmer R.E. (1997). Gas condensation source for production and deposition of size-selected metal clusters. Rev. Sci. Instrum. 68 (9): 3327--334

    Article  CAS  Google Scholar 

  • Goto M., Murakami J., Tei Y., Yoshimura K., Igarashi K., Tanemura S.(1997). Formation of alumina fine particles by a magnetron sputtering-gas aggregation method. Z. Phys. D40: 115--18

    Google Scholar 

  • Haberland, H., 1992. United States Patent # 5,110,435 (May 5, 1992)

  • Haberland H., Insepov Z., Karrais M., Mall M., Moseler M.,Thurner Y. (1993). Thin-Film growth by energetic cluster impact (ECI) comparision between experiment and molecular-dynamics simulations. Mater. Sci. Eng. B19: 31--6

    Article  CAS  Google Scholar 

  • Haberland H., Karrais M., Mall M., Thurner Y. (1992). Thin-films from energetic cluster impact – A feasiblity study. J. Vac. Sci. Tech. A10: 3266--271

    Google Scholar 

  • Haberland H., Mall M., Moseler M., Qiang Y., Reiners Th., Thurner Y. (1994). Filling of micron - sized contact holes with copper by energetic cluster-impact. J. Vac. Sci. Tech. A12: 2925--930

    Google Scholar 

  • Hall, B. D., 1991. An installation for the study of unsupported ultrafine particles by electron diffraction with application to silver: Observation of multiply twinned particle structures. Ph.D thesis, Éole Polytechnique Fédérale De Lausanne

  • Hartley G.S., Brunskill R.T. (1958). Surface Phenomena. In: Danielli J.F., Pankhurst K.G.A., Riddiford A.C. (eds.) Pergamon, London, p. 214.

  • Hihara T., Sumiyama K. (1998). Formation and size control of a Ni cluster by plasma gas condensation. J. Appl. Phys. 84 (9): 5270--276

    Article  CAS  Google Scholar 

  • Partridge J.G., Scott S., Dunbar A.D.F., Schulze M., Brown S.A., Wurl A., Blaikie R.J. (2004a). Formation of electrically conducting mesoscale wires throguh self-assembly of atomic clusters. IEEE Trans Nanotechn 3 (1): 61--6

    Article  Google Scholar 

  • Partridge J.G., Brown S.A., Dunbar A.D.F., Kaufmann M., Scott S., Schulze M., Reichel R., Siegert C., Blaikie R. (2004b). Template assembled antimony cluster mesowires and nanowires. Nanotechnology 15: 1382--387

    Article  CAS  Google Scholar 

  • Sattler K., Mühlbach J., Recknagel E. (1980). Generation of metal clusters containing from 2 to 500 atoms. Phys. Rev. Lett. 45: 821--24

    Article  CAS  Google Scholar 

  • Schmelzer J., Jr., Brown S.A., Wurl A., Hyslop M., Blaikie R.J. (2002). Finite-size effects in the conductivity of cluster assembled nanostructures. Phys. Rev. Lett. 88: 226802-1--26802-4

    Article  Google Scholar 

  • Schulze M., Gourley S., Brown S.A., Dunbar A.D.F., Partridge J.G., Blaikie R.J. (2003). Electrical measurements of nanoscale bismuth cluster films. Europ. Phys. J. D24 (1): 291--94

    Google Scholar 

  • von Issendorff B., Palmer R.E. (1999). A new high transmission infinite range mass selector for cluster and nanoparticle beams. Rev. Sci. Instr. 70 (12): 4497--501

    Article  Google Scholar 

  • Wiley W.C., McLaren I.H. (1955). Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26 (12): 1150--157

    Article  CAS  Google Scholar 

  • Yokozeki A., Stein G.D.(1978). A metal cluster generator for gas-phase electron diffration and its application to bismuth, lead, and indium: Variation in microcrystal structure with size. J. Appl. Phys. 49(4): 2224--232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Hellmut Haberland and PD Dr. Bernd v. Issendorff for their collaboration and helpful discussions regarding the magnetron sputter source. Additional thanks also to our technicians without whose help the construction of this system would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichel, R., Partridge, J.G., Dunbar, A.D. et al. Construction and Application of a UHV Compatible Cluster Deposition System. J Nanopart Res 8, 405–416 (2006). https://doi.org/10.1007/s11051-005-9021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9021-1

Keywords

Navigation