Skip to main content

Advertisement

Log in

Energy Consumption During Nanoparticle Production: How Economic is Dry Synthesis?

  • Perspectives
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The production of oxide nanoparticles by selected wet-chemistry or dry processes is compared in terms of energy requirements. Clear differences arise for production using electricity-intensive plasma processes, organic- or chloride-derived flame synthesis and liquid based precipitation processes. In spite of short process chains and elegant reactor design, many dry methods inherently require vastly bigger energy consumption than the multi-step wet processes. Product composition strongly influences the selection of the preferred method of manufacturing in terms of energy requirement: Metal oxide nanoparticles of light elements with high valency, e.g. titania demand high volumes of organic precursors and traditional processes excel in terms of efficiency. Products with heavier elements, more complex composition and preferably lower valency such as doped ceria, zirconia, and most mixed oxide ceramics may be readily manufactured by recently developed dry processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Althaus H-J., M. Chudacoff, S. Hellweg, R. Hischier, N. Jungbluth, M. Osses & A. Primas, 2003. Life Cycle Inventories of Chemicals, Final report ecoinvent 2000 No. 8.

  • Backman U., Tapper U. and Jokiniemi J.K. (2004). An aerosol method to synthesize supported metal catalyst nanoparticles. Synthetic Met. 142(1–3): 169–176

    Article  CAS  Google Scholar 

  • Besling W.F.A., Goossens A., Meester B. and Schoonman J. (1998). Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films. J. Appl. Phys. 83(1): 544–553

    Article  CAS  Google Scholar 

  • Buchner P., Lutzenkirchen-Hecht D., Strehblow H.H. and Uhlenbusch J. (1999). Production and characterization of nanosized Cu/O/SiC composite particles in a thermal rf plasma reactor. J. Mater. Sci. 34(5): 925–931

    Article  CAS  Google Scholar 

  • Buchner P., Schubert H., Uhlenbusch J. and Weiss M. (2001). Evaporation of zirconia powders in a thermal radio-frequency plasma. J. Therm. Spray Techn. 10(4): 666–672

    Article  CAS  Google Scholar 

  • Bummer P.M. (2004). Physical chemical considerations of lipid-based oral drug delivery – Solid lipid nanoparticles. Crit. Rev. Ther. Drug 21(1): 1–19

    Article  CAS  Google Scholar 

  • Burgess L., 1922. Process of production of zirconium compounds, US 1′418′528.

  • Chen S.Y. and Shen P.Y. (2004). Laser ablation condensation and transformation of baddeleyite-type related TiO2. Jpn. J. Appl. Phys. Part 1 43(4A): 1519–1524

    Article  CAS  Google Scholar 

  • Defra, 2004. Environmental Reporting Guidelines for Company Reporting on Greenhouse Gas Emissions, http://www.thecarbontrust.co.uk/energyCMS/CarbonTrust/pages_ preview/page_64.asp

  • De La Veaux S.C. & L. Zhang, 2004. Method of producting nanoparitcles using a evaporation and condensation process with a reaction chamber plasma reactor system, WO056416.

  • Eliezer S., N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman & Y. Lereah, 2004. Synthesis of nanoparticles with femtosecond laser pulses. Phys. Rev. B, 69(14).

  • Fauchais P., Vardelle A. and Dussoubs B. (2001). Quo vadis thermal spraying?. J. Therm. Spray Techn. 10(1): 44–66

    Article  CAS  Google Scholar 

  • Federal Environmental Agency, 2001. Large Volume Solid Inorganic Chemcials, Titanium Dioxide, Final Report, Institute for environmental technique and management.

  • Gmelin, 1958. Gmelins Handbuch der anorganischen Chemie.

  • Godal O. and Fuglestvedt J. (2002). Testing 100-year global warming potentials: Impacts on compliance costs and abatement profile. Climatic Change 52(1–2): 93–127

    Article  CAS  Google Scholar 

  • Gutsch A., Kraemer M., Michael G., Muehlenweg H., Pridoehl M. and Zimmermann G. (2002). Gas-Phase Production of Nanoparticles. KONA 20: 24–37

    CAS  Google Scholar 

  • ISO 14040, 1997. Life cycle impact assessment – ISO 14040, International standardization organization, Geneva.

  • Itn Nanovation Gmbh Press Report, 2004, http://www.itn-nanovation.com/com/a-halberstadt.html

  • Jensen J.R., Johannessen T., Wedel S. and Livbjerg H. (2003). A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis. J. Catal. 218(1): 67–77

    Article  CAS  Google Scholar 

  • Kammler H.K., Madler L. and Pratsinis S.E. (2001). Flame synthesis of nanoparticles. Chem. Eng.Technol. 24(6): 583–596

    Article  CAS  Google Scholar 

  • Kammler H.K., & S.E. Pratsinis, 2001. Composite carbon black-fumed silica nanostructured particles, EP 1 122 212.A1, EP 1 122 212.B1.

  • Kim S.H., Liu B.Y.H. and Zachariah M.R. (2004). Ultrahigh surface area nanoporous silica particles via an aero-sol-gel process. Langmuir 20(7): 2523–2526

    Article  CAS  Google Scholar 

  • Kruis F.E., Fissan H. and Peled A. (1998). Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications – A review. J. Aerosol Sci. 29(5–6): 511–535

    Article  CAS  Google Scholar 

  • Laine R.M., Baranwal R., Hinklin T., Treadwell D., Sutorik A., Bickmore C., Waldner K. and Neo S.S. (1999). Making nanosized oxide powders from precursors by flame spray pyrolysis. Novel Synth. Process. Ceramics 159(1): 17–24

    Google Scholar 

  • Loeffer F. & J. Raasch, 1992. Grundlagen der Mechanischen Verfahrentechnik. Vieweg.

  • Loher S., M. Maciejewski, S.E. Pratsinis, A. Baiker & W.J. Stark, 2004. Flame synthesis of metal salt nanoparticles, in particular calcium and phosphate comprising nanoparticles, International patent application.

  • Madler L., Kammler H.K., Mueller R. and Pratsinis S.E. (2002a). Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33(2): 369–389

    Article  CAS  Google Scholar 

  • Madler L., Stark W.J. and Pratsinis S.E. (2002b). Flame-made ceria nanoparticles. J. Mater. Res. 17(6): 1356–1362

    Article  CAS  Google Scholar 

  • Makela J.M., Keskinen H., Forsblom T. and Keskinen J. (2004). Generation of metal and metal oxide nanoparticles by liquid flame spray process. J. Mat. Sci. 39(8): 2783–2788

    Article  Google Scholar 

  • Marchal J., John T., Baranwal R., Hinklin T. and Laine R.M. (2004). Yttrium aluminum garnet nanopowders produced by liquid-feed flame spray pyrolysis (LF-FSP) of metalloorganic precursors. Chem. Mater. 16(5): 822–831

    Article  CAS  Google Scholar 

  • Michel D., Faudot F., Gaffet E. and Mazerolles L. (1993). Stabilized Zirconias Prepared by Mechanical Alloying. Journal of the American Ceramic Society 76(11): 2884–2888

    Article  CAS  Google Scholar 

  • Narayanan R. and Laine R.M. (1997). Synthesis and characterization of precursors for group II metal aluminates. Appl. Organomet. Chem. 11(10–11): 919–927

    Article  CAS  Google Scholar 

  • Pennington D.W., Potting J., Finnveden G., Lindeijer E., Jolliet O., Rydberg T. and Rebitzer G. (2004). Life cycle assessment Part 2: Current impact assessment practice. Environ. Int. 30(5): 721–739

    Article  CAS  Google Scholar 

  • Pratsinis S.E. (1998). Flame aerosol synthesis of ceramic powders. Prog. Energ. Combust 24(3): 197–219

    Article  CAS  Google Scholar 

  • Rebitzer G., Ekvall T., Frischknecht R., Hunkeler D., Norris G., Rydberg T., Schmidt W.P., Suh S., Weidema B.P. and Pennington D.W. (2004). Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30(5): 701–720

    Article  CAS  Google Scholar 

  • Reck E. and Richards M. (1999). Titanium dioxide manufacture and life cycle analysis. Pigment Res. Technol. 28(3): 149–157

    Article  CAS  Google Scholar 

  • Rittner M. (2003). Nanoparticles – What’s now, what’s next?. Chem. Eng. Prog. 99(11): 39s–42s

    CAS  Google Scholar 

  • Roco M.C. and Bainbridge W.S. (2002). Converging technologies for improving human performance: Integrating from the nanoscale. J. Nanopart. Res. 4(4): 281–295

    Article  Google Scholar 

  • Schubert H., E. Heidenreich, F. Liepe & T. Ness, 1990. Mechanische Verfahrenstechnik. Deutscher Verlag fuer Grundstoffindustrie.

  • Stark W.J. and Pratsinis S.E. (2002). Aerosol flame reactors for manufacture of nanoparticles. Powder Technol. 126(2): 103–108

    Article  CAS  Google Scholar 

  • Tsantilis S., Kammler H.K. and Pratsinis S.E. (2002). Population balance modeling of flame synthesis of titania nanoparticles. Chem. Eng. Sci. 57(12): 2139–2156

    Article  CAS  Google Scholar 

  • Wenger K. and Pratsinis S.E. (2000). Aerosol Flame Reactors for Synthesis of Nanoparticles. KONA 18: 170–182

    Google Scholar 

  • Winter M., 1986. Department of Chemistry, University of Shefield, England, www.webelements.com.

  • Zhu W.H. and Pratsinis S.E. (1996). Flame synthesis of nanosize powders - Effect of flame configuration and oxidant composition. Nanotechnology 622: 64–78

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendelin J. Stark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osterwalder, N., Capello, C., Hungerbühler, K. et al. Energy Consumption During Nanoparticle Production: How Economic is Dry Synthesis?. J Nanopart Res 8, 1–9 (2006). https://doi.org/10.1007/s11051-005-8384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-8384-7

Key words

Navigation