Skip to main content
Log in

Cationic Substitution Sites in Mn2+-doped ZnS Nanoparticles

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2006

Abstract

Mn2+-doped ZnS nanoparticles of average size 2.5±0.3 nm have been studied and characterized in the dopant concentration range 0.1–0.3% using XRD, EPR, XPS and photoluminescence methods. The experimental results obtained from these studies indicate that the doping of Mn2+ occurs primarily at the T d sites at low dopant concentration, causing the4T1(G) → 6A1(S) transition to take place in the host lattice; the observed decrease in the intensity of photoluminescence at high dopant concentration is due to the setting in of the strong Mn2+–Mn2+ interaction arising from cluster formation at the highly distorted sites near the particle surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam A. and Bleaney B. (1970). Electron Paramagnetic Resonance of Transition Ions. Clarendon Press, Oxford

    Google Scholar 

  • Bleaney B. (1951). Hyperfine structure in paramagnetic salts and nuclear alignment. Philos. Mag. 42: 441–458

    CAS  Google Scholar 

  • Cullity B.D. (1956.). Elements of X-ray Diffraction. Addison-Wesley Publishing Company, Inc., Reading, MA, 99

    Google Scholar 

  • Gonzalez Beermann P.A., McGarvey B.R., Muralidharan S. and Sung R.C.W. (2004). EPR spectra of Mn2+-doped ZnS quantum dots. Chem. Mater. 16: 915–918

    Article  CAS  Google Scholar 

  • Hershberger W.D. and Leifer H.N. (1952). Paramagnetic resonance in phosphors. Phys. Rev. 88: 714–720

    Article  CAS  Google Scholar 

  • Matarrese L.M. and Kikuchi C.J. (1956). Paramagnetic resonance absorption of Mn2+ in single crystals of zincblende. Phys. Chem. Solids 1: 117–127

    Article  CAS  Google Scholar 

  • Pohl U.W. and Gumlich H.E. (1989). Optical transitions of different Mn-ion pairs in ZnS. Phys. Rev. B 40: 1194–1201

    Article  CAS  Google Scholar 

  • Qadri S.B., Skelton E.F., Hsu D., Dinsmore A.D., Yang J., Gray H.F. and Ratna B.R. (1999). Size-induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. B 60: 9191–9193

    Article  CAS  Google Scholar 

  • Soo Y.L., Ming Z.H., Huang S.W., Kao Y.H., Bhargava R.N. and Gallagher D. (1994). Local structures around Mn luminescent centers in Mn-doped nanocrystals of ZnS. Phys. Rev. B 50: 7602–7607

    Article  CAS  Google Scholar 

  • Title R.S. (1963). Electron paramagnetic resonance of Cr+, Mn2+ and Fe3+ in cubic ZnS. Phys. Rev. 131: 623–627

    Article  CAS  Google Scholar 

  • Yeom T.H., Lee Y.H., Hahn T.S., Oh M.H. and Choh S.H. (1996). Electron-paramagnetic resonance study of Mn2+ luminescence center in ZnS:Mn powder and thin films. J. Appl. Phys. 79(2): 1004–1007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subra Muralidharan or Raymond C. W. Sung.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11051-006-9129-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beermann, P.A.G., McGarvey, B.R., Skadtchenko, B.O. et al. Cationic Substitution Sites in Mn2+-doped ZnS Nanoparticles. J Nanopart Res 8, 235–241 (2006). https://doi.org/10.1007/s11051-005-7525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-7525-3

Key words:

Navigation