Skip to main content
Log in

Luminescence properties of Mn and Ni doped ZnS nanoparticles synthesized by capping agent

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnS and transition metal (Mn and Ni) doped ZnS were synthesized by a simple chemical method using alkyl hydroxyl ethyl dimethyl ammonium chloride (HY) as capping agent. The structural and optical properties were studied using various techniques. FTIR and X-ray diffraction (XRD) can be used to identify the chemical bonding and crystal structure. The XRD analysis show that the particles are in cubic structure. The mean size of the nanoparticles calculated through Scherrer equation is in the range of 5–2.5 nm. Elemental dispersive analysis of doped samples reveals the presence of doping ions. The transmission electron microscopic studies show that the synthesized particles are in spherical shape. Optical characterization of both undoped and doped samples was carried out by ultraviolet–visible and photoluminescence spectroscopy. The absorption spectra of all the samples are blue shifted from the bulk ZnS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.M. Hwang, M.O. Oh, I. Kim, J.K. Lee, C.S. Ha, Curr. Appl. Phys. 5, 31–34 (2005)

    Article  Google Scholar 

  2. T. Yamamoto, S. Kishimoto, S. Iida, Phys. B 308, 916–919 (2001)

    Article  Google Scholar 

  3. M. Wang, L. Sun, X. Fu, C. Liao, C. Yan, Solid State Comm. 115, 493 (2000)

    Article  Google Scholar 

  4. A.A. Bol, J. Ferwerda, J.A. Bergwerff, A. Meijerink, J. Lumin. 99, 325–334 (2002)

    Article  Google Scholar 

  5. R. Sharma, H.S. Bhatti, Nanotechnology 18, 465703 (2007)

    Article  Google Scholar 

  6. H. Soni, M. Chawda, D. Bodas, Mater. Lett. 63, 767 (2009)

    Article  Google Scholar 

  7. A.A. Bol, R. Beek, A. Meijerink, Chem. Mater. 14, 1121 (2002)

    Article  Google Scholar 

  8. P. Yang, M. Lu, D. Xu, D. Yuan, J. Chang, G. Zhou, M. Pan, Appl. Phys. A74, 257–259 (2002)

    Article  Google Scholar 

  9. C.S. Pathak, M.K. Mandal, Optoelectron. Adv. Mater. Rapid Commun. 5(3), 211–214 (2011)

    Google Scholar 

  10. E. Ivanov, C. Suryanarayana, J. Mater. Synth. Process. 8(3/4), 235–244 (2000)

    Article  Google Scholar 

  11. P. Balaz, P. Pourghahramani, E. Dutkova, E. Turianicova, J. Kovac, A. Satka, Phys. Status Solidi (C) 5(12), 3756–3758 (2008)

    Article  Google Scholar 

  12. T.T.Q. Hoa, N.D. The, S. McVitie, N.H. Nam, L.V. Vu, T.D. Canh, N.N. Long, Opt. Mater. 33, 308–314 (2011)

    Article  Google Scholar 

  13. M.W. Wang, L.D. Sun, C.H. Liu, C.S. Liao, C.H. Yan, Chin. J. Lumin. 20(3), 247 (1999)

    Google Scholar 

  14. Y. Tong, Z. Jiang, C. Wang, Y. Xin, Z. Huang, S. Liu, C. Li, Mater. Lett. 62, 3385–3387 (2008)

    Article  Google Scholar 

  15. J.F. Xu, H.S. Jiw, Y.W. Tang Du, Appl. Phys. A66, 639 (1998)

    Article  Google Scholar 

  16. N. Murase, R. Jagannathar, Y. Kanematsu, M. Watanable, A. Kurita, K. Hirata, T. Yazawa, T. Kushida, J. Phys. Chem. B 103, 754 (1999)

    Article  Google Scholar 

  17. L.X. Cao, J.H. Zhang, S.L. Ren, S.H. Huang, Appl. Phys. Lett. 80(23), 4300 (2002)

    Article  Google Scholar 

  18. D. Jiang, L. Cao, G. Su, H. Qu, D. Sun, Appl. Surf. Sci. 253, 9330–9335 (2007)

    Article  Google Scholar 

  19. R. Yousefi, A.K. Zak, Mater. Sci. Semicond. Process. 14, 170–174 (2011)

    Article  Google Scholar 

  20. R. Yousefi, M.R. Muhamad, A.K. Zak, Curr. Appl. Phys. 11, 767–770 (2011)

    Article  Google Scholar 

  21. S. Sapra, J. Nanda, A. Anan, S.V. Bhat, D.D. Sarma, J. Nanosci. Nanotech. 3, 392 (2003)

    Article  Google Scholar 

  22. B. Bhattacharjee, D. Ganguli, K. Iakoubovskii, A. Stesmans, S. Chaudhuri, Bull Mater. Sci. 25, 175 (2002)

    Article  Google Scholar 

  23. J.K. Salem, T.M. Hammad, M.A. Draaz, S. Kuhn, R. Hempelmann, J. Mater. Sci. Mater. Electron. 25, 2177 (2014)

    Article  Google Scholar 

  24. H.R. Pouretedal, M.H. Keshavarz, J. Alloys Compd. 501, 130–135 (2010)

    Article  Google Scholar 

  25. O. Khani, H.R. Rajabi, M.H. Yousefi, A.A. Khosravi, M. Jannesari, M. Shamsipur, Spectrochim. Acta A 79, 361–369 (2011)

    Article  Google Scholar 

  26. H.R. Pouretedal, M.H. Keshavarz, M.H. Yosefi, A. Shokrollahi, A. Zali, Iran. J. Chem. Chem. Eng. 28, 13–19 (2009)

    Google Scholar 

  27. Rajesh Sharma, H.S. Bhatti, Nanotechnology 18, 465703 (2007)

    Article  Google Scholar 

  28. A.K. Keshari, M. Kumar, P.K. Singh, A.C. Pandey, J. Nanosci. Nanotechnol. 8, 1221 (2008)

    Article  Google Scholar 

  29. K. Sooklal, B.S. Cullum, S.M. Angel, C.J. Murphy, J. Phys. Chem. 100, 4551 (1996)

    Article  Google Scholar 

  30. R. Sethi, L. Kumar, A.C. Pandey, J. Nanosci. Nanotechnol. 9, 5329 (2009)

    Article  Google Scholar 

  31. R.N. Bhargava, D. Gallagher, Phys. Rev. Lett. 72, 416 (1994)

    Article  Google Scholar 

  32. P. Yang, M.K. Lhu, D. Xu, D. Yuan, J. Chang, G.J. Zhou, M. Pan, Appl. Phys. A74, 257 (2002)

    Article  Google Scholar 

  33. T. Toyoda, M. Unno, N. Nakajima, Phys. B 316–317, 472 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talaat M. Hammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, J.K., Hammad, T.M., Kuhn, S. et al. Luminescence properties of Mn and Ni doped ZnS nanoparticles synthesized by capping agent. J Mater Sci: Mater Electron 25, 5188–5194 (2014). https://doi.org/10.1007/s10854-014-2287-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2287-2

Keywords

Navigation