Skip to main content
Log in

Nanoparticle and Nanoporous Carbon Adsorbents for Removal of Trace Organic Contaminants from Water

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Removal of a wide range of trace organic contaminants from water to concentrations below USEPA Maximum Contaminant Levels (MCL) remains an important goal for the water industry. Design of advanced carbon based adsorption systems represents a unique approach to solving these problems. A number of successful examples are cited in this paper and are briefly summarized in the following section.

  1. (1)

    Removal of foulants such as humic acid using nanoparticle carbon blacks and chemically activated nanoporous fibers;

  2. (2)

    Removal of trace organic contaminants such as benzene, toluene, ethylbenzene and p-xylene (BTEX) to levels below USEPA MCL using nanoporous carbon fibers;

  3. (3)

    Removal of trace chemical warfare simulants such as diisopropylmethyl phosponate and chloroethylethylsulfide using enlarged nanoporous carbon fibers;

  4. (4)

    Removal of trace chlorinated solvents such as trichloroethylene (TCE) and chloroform using tailored nanoporous carbon fibers;

  5. (5)

    Removal of the trace herbicide, atrazine, to below USEPA MCL level using nanoporous chemically activated fibers.

In this paper the enormous improvement of the above systems over commercially available products in static and dynamic adsorption evaluation is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Water Works Association, 1990. Water Quality and Treatment: A Handbook of Community Water Supplies, 4th edn. Mc Graw-Hill, Inc.: pp. 106

  • R.C. Bansal J.B. Donnet F. Ellerbusch (1988) Active Carbon Marcel Dekker, Inc. New York

    Google Scholar 

  • A. Bembnowska R. Pelech E Milchert (2003) ArticleTitleAdsorption from aqueous solutions of chlorinated organic compounds onto activated carbons Colloid Interface Sci. 265 276–282 Occurrence Handle10.1016/S0021-9797(03)00532-0

    Article  Google Scholar 

  • Cheremisinoff P.N. & A. C. Morresi, 1978. Carbon adsorption applications. In: Cheremisinoff, P.N. & Ellerbusch F. eds. Carbon Adsorption Handbook. Ann Arbor Science Publishers, Inc.: pp. 4

  • P.S. Chintawar H.L Greene (1997) ArticleTitleAdsorption and catalytic destruction of trichloroethylene in hydrophobic zeolites I Environment 14 IssueID1–2 37–47

    Google Scholar 

  • J. Cromphout W. Rogge (2002) ArticleTitleCost-effective water treatment of polluted surface water by using direct filtration and granular activated carbon filtration Water Sci. Technol. Water Supply 2 IssueID1 233–240

    Google Scholar 

  • M.A. Daley C.L. Mangun J.A. DeBarr S. Riha A.A. Lizzio G.L. Donnals J Economy (1997) ArticleTitleAdsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFS) Carbon 35 IssueID3 411–417 Occurrence Handle10.1016/S0008-6223(97)89612-1

    Article  Google Scholar 

  • S. Deng R Bai (2003) ArticleTitleAminated polyacrylonitrile fibers for humic acid adsorption: Behaviors and mechanisms Environ. Sci. Technol. 37 IssueID24 5799–5805 Occurrence Handle10.1021/es034399d Occurrence Handle14717198

    Article  PubMed  Google Scholar 

  • Economy J. & M.A. Daley, 1998. Coated adsorbent fibers. US Patent: 5834114

  • Economy J., C.L. Mangun & Z. Yue, 2001. Activated organic coatings on a fiber substrate. US Patent: 6517906

  • Gaffney J.S., N.A. Marley & S.B. Clark, 1996. In: J.S. Gaffney, Marley, N.A., Clark S.B. eds. Humic and Fulvic Acids: Isolation, Structure, and Environmental Role, ACS Symp. Ser., 651, Washington DC: pp. 2

  • S.J. Gregg K.S.W. Sing (1982) Adsorption, Surface Area, and Porosity EditionNumber2 Academic Press London

    Google Scholar 

  • S. Han S. Kim H. Lim W. Choi H. Park J. Yoon T. Hyeon (2003) ArticleTitleNew nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids Micropor. Mesopor. Mater. 58 131–135 Occurrence Handle10.1016/S1387-1811(02)00611-X

    Article  Google Scholar 

  • Hetrick, J., R. Parker, R. Pisigan, Jr. & N. Thurman, 2000. Progress report on estimating pesticide concentrations in drinking water and assessing water treatment effects on pesticide removal and transformation: A consultation. EPA, Office of Pesticide Programs: 28 pp. Website: http://www.epa. gov/scipoly/sap/2000/september/sept00_sap_dw_0907.pdf

  • W. Huang H. Yeh (1999) ArticleTitleReaction of chlorine with NOM adsorbed on powdered activated carbon Water Res. 33 IssueID1 65–72 Occurrence Handle10.1016/S0043-1354(98)00184-5

    Article  Google Scholar 

  • J.E. Kilduff T. Karanfil W.J. Weber SuffixJr. (1996) ArticleTitleAdsorption of natural organic polyelectrolytes by activated carbon: A size-exclusion chromatography study Environ. Sci. Technol. 30 IssueID4 1344–1351 Occurrence Handle10.1021/es950546z

    Article  Google Scholar 

  • T. Lebeau C. Lelievre D. Wolbert A. Laplanche M. Prados P Cote (1999) ArticleTitleEffect of natural organic matter loading on the atrazine adsorption capacity of an aging powdered activated carbon slurry Water Res. 33 IssueID7 1695–1705 Occurrence Handle10.1016/S0043-1354(98)00370-4

    Article  Google Scholar 

  • Q. Li V.L. Snoeyink B.J. Marinas C Campos (2003) ArticleTitlePore blockage effect of NOM on atrazine adsorption kinetics of PAC: The roles of PAC pore size distribution and NOM molecular weight Water Res. 37 IssueID20 4863–4872 Occurrence Handle10.1016/j.watres.2003.08.018 Occurrence Handle14604632

    Article  PubMed  Google Scholar 

  • C. Lin T. Lin O.J. Hao (2000) ArticleTitleEffect of humic substance characteristics on UF performance Water Res. 34 IssueID4 1097–1106 Occurrence Handle10.1016/S0043-1354(99)00273-0

    Article  Google Scholar 

  • C.L. Mangun Z. Yue J. Economy S. Maloney P. Kemme D. Cropek (2001) ArticleTitleAdsorption of organic contaminants from water using tailored ACFs Chem. Mater. 13 2356–2360 Occurrence Handle10.1021/cm000880g

    Article  Google Scholar 

  • I. Martin-Gullon R. Font (2001) ArticleTitleDynamic pesticide removal with activated carbon fibers Water Res. 35 IssueID2 516–520 Occurrence Handle10.1016/S0043-1354(00)00262-1 Occurrence Handle11229006

    Article  PubMed  Google Scholar 

  • G. Newcombe M. Drikas R. Hayes (1997) ArticleTitleInfluence of characterized natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-Methylisoborneol Water Res. 31 IssueID5 1065–1073 Occurrence Handle10.1016/S0043-1354(96)00325-9

    Article  Google Scholar 

  • J.S. Park H.J. Lee S.J. Choi K.E. Geckeler J. Cho S.H Moon (2003) ArticleTitleFouling mitigation of anion exchange membrane by zeta potential control J. Colloid Interface Sci. 259 IssueID2 293–300 Occurrence Handle10.1016/S0021-9797(02)00095-4

    Article  Google Scholar 

  • L Pauling (1960) An Introduction to Modern Structural Chemistry EditionNumber3 Cornell University Press New York

    Google Scholar 

  • C. Pelekani V.L Snoeyink (2000) ArticleTitleCompetitive adsorption between atrazine and methylene blue on activated carbon: The importance of pore size distribution Carbon 38 IssueID10 1423–1436 Occurrence Handle10.1016/S0008-6223(99)00261-4

    Article  Google Scholar 

  • F.W Pontious (1990) Water Quality and Treatment McGraw-Hill New York

    Google Scholar 

  • F.J Stevenson (1982) Humus Chemistry Wiley New York

    Google Scholar 

  • Z. Yue C.L. Mangun J. Economy (2002) ArticleTitlePreparation of fibrous porous materials by Chemical activation 1. ZnCl2 Activation of Polymer Coated Fibers Carbon 40 1181–1191 Occurrence Handle10.1016/S0008-6223(01)00268-8

    Article  Google Scholar 

  • Z. Yue C.L. Mangun J. Economy (2004) ArticleTitleCharacterization of surface chemistry and pore structure of H3PO4-activated poly(vinyl alcohol) coated fiberglass Carbon 42 1973–1982 Occurrence Handle10.1016/j.carbon.2004.03.030

    Article  Google Scholar 

  • Z. Yue C.L. Mangun J. Economy P. Kemme D. Cropek S. Maloney (2001) ArticleTitleRemoval of chemical contaminants from water to below USEPA MCL using fiberglass supported activated carbon filters Envir. Sci. Eng. 35 2844–2848

    Google Scholar 

  • Z. Yue J. Economy C.L. Mangun (2003) ArticleTitlePreparation of fibrous porous materials by chemical activation. 2. H3PO4 activation of polymer-coated fibers Carbon 41 1809–1817 Occurrence Handle10.1016/S0008-6223(03)00151-9

    Article  Google Scholar 

  • X. Zhang R. Bai (2003) ArticleTitleMechanisms and kinetics of humic acid adsorption onto chitosan-coated granules J. Colloid Interface Sci. 264 IssueID1 30–38 Occurrence Handle10.1016/S0021-9797(03)00393-X Occurrence Handle12885516

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Economy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, Z., Economy, J. Nanoparticle and Nanoporous Carbon Adsorbents for Removal of Trace Organic Contaminants from Water. J Nanopart Res 7, 477–487 (2005). https://doi.org/10.1007/s11051-005-4719-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-4719-7

Keywords

Navigation