Skip to main content

Advertisement

Log in

Halting the hallmarks: a cellular automaton model of early cancer growth inhibition

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Cancer treatment is a fragmented and varied process, as “cancer” is really hundreds of different diseases. The “hallmarks of cancer” proposed by Hanahan and Weinberg (Cell 100(1):57–70, 2000) are a framework for viewing cancer within a common set of underlying principles—ten properties that are common to almost all cancers, allowing them to grow uncontrollably and ravage the body. We used a cellular automaton model of tumour growth paired with lattice Boltzmann methods modelling oxygen flow to simulate combination drugs targeted at knocking out pairs of hallmarks. We found that knocking out some pairs of cancer-enabling hallmarks did not prevent tumour formation, while other pairs significantly prevent tumour growth (\(p=0.0004\) using Wilcoxon signed-rank adjusted with the Bonferroni correction for multiple comparisons). This is not what would be expected from models of knocking out the hallmarks individually, as many pairs did not have an additive effect but had either no statistically significant effect or a multiplicative one. We propose that targeting certain pairs of cancer hallmarks, specifically cancers ability to induce blood vessel development paired with another cancer hallmark, could prove an effective cancer treatment option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott R, Forrest S, Pienta K (2006) Simulating the hallmarks of cancer. Artif Life 4(12):617–34

    Article  Google Scholar 

  • Anderson ARA, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8(3):227–234. doi:10.1038/nrc2329, http://www.ncbi.nlm.nih.gov/pubmed/18273038

  • Anderson ARA, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915. doi:10.1016/j.cell.2006.09.042, http://www.ncbi.nlm.nih.gov/pubmed/17129778

  • Anderson ARA, Rejniak KA, Gerlee P, Quaranta V (2008) Modelling of cancer growth, evolution and invasion: bridging scales and models. Math Model Nat Phenom 2(3):1–29. doi:10.1051/mmnp:2007001, http://www.mmnp-journal.org/10.1051/mmnp:2007001

  • Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31(1):9–18

    Article  Google Scholar 

  • Basanta D, Ribba B, Watkin E, You B, Deutsch A (2011) Computational analysis of the influence of the microenvironment on carcinogenesis. Math Biosci 229(1):22–29. doi:10.1016/j.mbs.2010.10.005, http://www.sciencedirect.com/science/article/pii/S0025556410001616

  • Bello L, Lucini V, Costa F, Pluderi M, Giussani C, Acerbi F, Carrabba G, Pannacci M, Caronzolo D, Grosso S, Shinkaruk S, Colleoni F, Canron X, Tomei G, Deleris G, Bikfalvi A (2004) Combinatorial administration of molecules that simultaneously inhibit angiogenesis and invasion leads to increased therapeutic efficacy in mouse models of malignant glioma combinatorial administration of molecules that simultaneously inhibit angiogenesis. Clin Cancer Res 10(13):4527–4537

  • Bellomo N, De Angelis E (2008) Selected topics in cancer modeling: genesis, evolution, immune competition, and therapy. Springer, Berlin

    Google Scholar 

  • Bentley K, Bates P, Gerhardt H (2008) Artificial life as cancer research: embodied agent modelling of blood vessel growth in tumours. In: Proceedings of artifical life XI

  • Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19(5):698–711

    Article  Google Scholar 

  • Bhatnagar E, Gross E, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511

  • Chen S, Doolen GD (1998) Lattice boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–64

    Article  MathSciNet  Google Scholar 

  • Chinese Academy of Medical Sciences (2014) Efficacy and safety study of recombinant endostatic combined with chemotherapy to treat advanced colorectal cancer. ClinicalTrials.gov Bethesda (MD): National Library of Medicine (US)

  • Detjen KM, Rieke S, Deters A, Schulz P, Rexin A, Vollmer S, Hauff P, Wiedenmann B, Pavel M, Scholz A (2010) Angiopoietin-2 promotes disease progression of neuroendocrine tumors. Clin Cancer Res 16(2):420–429

    Article  Google Scholar 

  • Ebos JML, Lee CR, Cruz-Munoz W, Bjarnason Ga, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239. doi:10.1016/j.ccr.2009.01.021, http://www.ncbi.nlm.nih.gov/pubmed/19249681

  • Erbertseder K, Reichold J, Flemisch B, Jenny P, Helmig R (2012) A coupled discrete/continuum model for cancer-therapeutic transport in the lung. PloS One 7(3)

  • Evan G, Littlewood T (1998) A matter of life and cell death. Science 281(5381):1317–1322

    Article  Google Scholar 

  • Ferlay J, Shin H, Bray F, Forman D, Mathers C, Parkin D (2008) Globocan2008 cancer incidence and mortality worldwide: Iarc cancerbase no. 10

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. Nat Engl J Med 285:L529–L533

    Article  Google Scholar 

  • Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138(4):745–753

    Article  Google Scholar 

  • Gerlee P, Anderson ARA (2007) An evolutionary hybrid cellular automaton model of solid tumour growth. J Theor Biol 246(4):583–603. doi:10.1016/j.jtbi.2007.01.027, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652069/?tool=pmcentrez

  • Gerlee P, Anderson ARA (2008) A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype. J Theor Biol 250:705–722

    Article  MathSciNet  Google Scholar 

  • Gerlee P, Anderson ARA (2009) Evolution of cell motility in an individual-based model of tumour growth. J Theor Biol 259(1):67–83. doi:10.1016/j.jtbi.2009.03.005

    Article  MathSciNet  Google Scholar 

  • Gevertz JL, Gillies GT, Torquato S (2008) Simulating tumor growth in confined heterogeneous environments. Phys Biol 5(3):036010. doi:10.1088/1478-3975/5/3/036010, http://www.ncbi.nlm.nih.gov/pubmed/18824788

  • Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  Google Scholar 

  • Hanahan D, Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  Google Scholar 

  • Hellenic Oncology Research Group (2014) Paclitaxel plus bevacizumab for older patients with breast cancer. ClinicalTrials.gov Bethesda (MD): National Library of Medicine (US)

  • Henderson E, Samaha R (1969) Evidence that drugs in multiple combinations have materially advanced the treatment of human malignancies. Cancer Res 29(12):2272–2280

    Google Scholar 

  • Hirata Y, Bruchovsky N, Aihara K (2010) Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. J Theor Biol 264(2):517–527. doi:10.1016/j.jtbi.2010.02.027, http://www.ncbi.nlm.nih.gov/pubmed/20176032

  • Hoffmann-La Roche (2014) A study of avastin (bevacizumab) in combination with chemotherapy in patients with breast cancer progressing after first-line therapy with avastin and chemotherapy (tania). ClinicalTrials.gov Bethesda (MD): National Library of Medicine (US)

  • International breast cancer study group (2014) Combination chemotherapy after surgery in treating patients with stage I, stage II or stage III breast cancer. ClinicalTrials.gov Bethesda (MD): National Library of Medicine (US)

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692

    Article  Google Scholar 

  • Junttila MR, Evan GI (2009) p53—a Jack of all trades but master of none. Nat Rev Cancer 9(11):821–829

    Article  Google Scholar 

  • Kam Y, Rejniak KA, Anderson ARA (2012) Cellular modeling of cancer invasion: integration of in silico and in vitro approaches. J Cell Physiol 227(2):431–438. doi:10.1002/jcp.22766, http://www.ncbi.nlm.nih.gov/pubmed/21465465

  • Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121(1):1–14

    Article  Google Scholar 

  • Korkola J, Gray JW (2010) Breast cancer genomes—form and function. Curr Opin Genet Dev 20(1):4–14

    Article  Google Scholar 

  • Lloyd BA, Szczerba D, Rudin M, Székely G (2008) A computational framework for modelling solid tumour growth. Philos Trans Ser A Math Phys Eng Sci 366(1879):3301–3318. doi:10.1098/rsta.2008.0092, http://www.ncbi.nlm.nih.gov/pubmed/18593664

  • Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432(7015):307–315

    Article  Google Scholar 

  • Macklin P, Edgerton ME, Thompson A, Cristini V (2012) Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS) I: model formulation and analysis. J Theor Biol 301:122–140

  • Maley C, Forrest S (2000) Exploring the relationship between neutral and selective mutations in cancer. Artif Life 6(4):325–345

    Article  Google Scholar 

  • McArdle WD, Katch FI, Katch VL (2005) Essentials of exercise physiology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Medical University of Vienna (2014) Metronomic and targeted anti-angiogenesis therapy for children with recurrent/progressive medulloblastoma (memmat). ClinicalTrials.gov Bethesda (MD): National Library of Medicine (US)

  • Monteagudo A, Santos J (2012) A cellular automaton model for tumor growth simulation. Adv Intell Soft Comput 154:147–155

    Article  Google Scholar 

  • Monteagudo A, Santos J (2013) Cancer stem cell modeling using a cellular automaton. IWINAC LNCS 7931:21–31

    Google Scholar 

  • Monteagudo A, Santos J (2014) Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context. Biosystems 115:46–58

    Article  Google Scholar 

  • Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D et al (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461

    Article  Google Scholar 

  • Orlandini E, Swift MR, Yeomans J (1995) A lattice boltzmann model of binary-fluid mixtures. EPL (Europhysics Letters) 32(6):463

    Article  Google Scholar 

  • Perona R (2006) Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol 8(2):77–82

    Article  Google Scholar 

  • Raica M, Cimpean AM, Ribatti D (2009) Angiogenesis in pre-malignant conditions. Eur J Cancer 45(11):1924–1934

    Article  Google Scholar 

  • Ramis-Conde I, Chaplain M AJ, Anderson ARA (2008) Mathematical modelling of cancer cell invasion of tissue. Math Comput Model 47(5–6):533–545. doi:10.1016/j.mcm.2007.02.034, http://linkinghub.elsevier.com/retrieve/pii/S0895717707001823

  • Rejniak KA, Anderson ARA (2011) Hybrid models of tumor growth. Wiley Interdiscip Rev Syst Biol Med 3(1):115–125. doi:10.1002/wsbm.102, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057876/?tool=pmcentrez

  • Rejniak KA, Anderson ARA (2012) State of the art in computational modelling of cancer. Math Med Biol 29(1):1–2. doi:10.1093/imammb/dqr029, http://www.ncbi.nlm.nih.gov/pubmed/22200587

  • Ribba B, Alarcón T, Marron K, Maini PK, Agur Z (2004) The use of hybrid cellular automaton models for improving cancer therapy. In: Sloot PMA, Chopard B, Hoekstra AG (eds) Cellular automata. Lecture notes in computer science, vol 3305. Springer, Hiedelberg, pp 444–453

  • Santos J, Monteagudo Á (2012) Study of cancer hallmarks relevance using a cellular automaton tumor growth model. In: Parallel problem solving from nature-PPSN XII, pp 489–499

  • Sener S, Fremgen A, Menck H, Winchester D (1999) Pancreatic cancer: a report of treatment and survival trends for 100,313 patients diagnosed from 1985–1995, using the national cancer database. J Am Coll Surg 189(1):1–7

    Article  Google Scholar 

  • Shrestha SMB, Joldes GR, Wittek A, Miller K (2013) Cellular automata coupled with steady-state nutrient solution permit simulation of large-scale growth of tumours. Int J Numer Methods Biomed Eng 29(4):542–559

    Article  Google Scholar 

  • Spencer SL, Berryman MJ, Garcia JA, Abbott D (2004) An ordinary differential equation model for the multistep transformation to cancer. J Theor Biol 231:515–524

    Article  MathSciNet  Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Sun X, Zhang L, Tan H, Bao J, Strouthos C, Zhou X (2012) Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: incorporating EGFR signaling pathway and angiogenesis. BMC Bioinform 13(1):218. doi:10.1186/1471-2105-13-218, http://www.biomedcentral.com/1471-2105/13/218

  • Sutherland R, Sordat B, Bamat J, Gabbert H, Bourrat B, Mueller-Klieser W (1986) Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res 46(10):5320–5329

    Google Scholar 

  • Swift M, Orlandini E, Osborn W, Yeomans J (1996) Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys Rev E 54(5):5041–5052. http://www.ncbi.nlm.nih.gov/pubmed/9965683

  • Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ (2008) Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 84(4):988–993

    Article  Google Scholar 

  • Tom BH, Rutzky LP, Jakstys MM, Oyasu R, Kaye CI, Kahan BD (1976) Human colonic adenocarcinoma cells. In Vitro 12(3):180–191

    Article  Google Scholar 

  • Vajdic CM, van Leeuwen MT (2009) Cancer incidence and risk factors after solid organ transplantation. Int J Cancer 125(8):1747–1754

    Article  Google Scholar 

  • Valvano JW, Cochran JR, Diller KR (1985) Thermal conductivity and diffusivity of biomaterials measured with self heated thermistors. Int J Thermophys 6(3):301–311

  • Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology 25(2):85–101

    Article  Google Scholar 

  • World Health Organization (2008) The global burden of disease: 2004 update. http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenna Butler.

Additional information

NSERC Discovery Grant and Compute Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, J., Mackay, F., Denniston, C. et al. Halting the hallmarks: a cellular automaton model of early cancer growth inhibition. Nat Comput 15, 15–30 (2016). https://doi.org/10.1007/s11047-015-9508-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-015-9508-3

Keywords

Navigation