Skip to main content

Advertisement

Log in

Wild Boar (Sus scrofa) as Reservoir of Zoonotic Yeasts: Bioindicator of Environmental Quality

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Wildlife animals are recognized as reservoirs for zoonotic fungi and their faeces might play an important role in introducing pathogens into the environment. Thought wild boar (Sus scrofa) population has dramatically increased across Europe, information about their possible role in dissemination of zoonotic pathogenic yeasts in the environment is scant. Therefore, fecal samples (n = 124) from wild boars from Campania region (Southern Italy) were collected and yeasts identified biochemically and molecularly by sequencing of the internal transcribed spacer region and their phylogenetical relationship assessed. The antifungal susceptibility profiles of yeasts were also investigated using AFST-EUCAST method. Yeasts were isolated from 50.1% of the samples with the highest occurrence in samples from the province of Salerno (61.1%). A total of 368 Candida strains belonging to nine species were identified, with Candida albicans (45.7%), followed by Candida krusei (15.2%), Kazachstania slooffiae (9.8%) and Candida parapsilosis (7.6%) as the most prevalent identified species. Among C. albicans four sequence types (i.e., ST1-ST4) were identified with an intraspecific nucleotide difference up to 0.21%. The ML tree grouped all representative sequence types as paraphyletic clades with those of the references yeast species, respectively and supported by high bootstrap values. Fluconazole was the less active drug whereas, posaconazole, voriconazole, and isavuconazole the most active one. No resistance phenomena were observed for C. albicans and high MICs values for 5FC, azoles and echinocandines were registered in non-albicans Candida spp. This study showed, for the first time, the important role of wild boars in dissemination of pathogenic fungi in the environment. The absence of resistance phenomena in the Candida spp. might reflect environmental free from residues of azoles antifungals pollution or chemicals and suggests the role of wild boar as bio indicators of environment quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

Sequences were deposited in GenBank under accession numbers MW279244– MW279253.

References

  1. Seyedmousavi S, De MG Bosco S, De Hoog S et al. Fungal infections in animals: a patchwork of different situations. Med Mycol. 2018; 56:S165−S187.

  2. Merseguel KB, Nishikaku AS, Rodrigues AM, et al. Genetic diversity of medically important and emerging Candida species causing invasive infection. BMC Infect Dis. 2015;15:57.

    Article  Google Scholar 

  3. McManus BA, Coleman DC. Molecular epidemiology, phylogeny, and evolution of Candida albicans. Infect Genet Evol. 2014;21:166–78.

    Article  Google Scholar 

  4. Schelenz S, Hagen F, Rhodes JL, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control. 2016;5:35.

    Article  Google Scholar 

  5. Mancianti F, Nardoni S, Ceccherelli R. Occurrence of yeasts in psittacines droppings from captive birds in Italy. Mycopathologia. 2002;153(3):121.

    Article  Google Scholar 

  6. Meng XJ, Lindsay DS, Sriranganathan N. Wild boars as sources for infectious diseases in livestock and humans. Philos Trans R Soc Lond B Biol Sci. 2009;364(1530):2697–707.

    Article  CAS  Google Scholar 

  7. Sgroi G, Varcasia A, Dessì G, et al. Cystic echinococcosis in wild boars (Sus scrofa) from southern Italy: epidemiological survey and molecular characterization. J Parasitol Parasites Wildl. 2019;9:305–11.

    Article  Google Scholar 

  8. Brilhante RSN, Castelo-Branco DDSCM, Soares GDP, et al. Characterization of the gastrointestinal yeast microbiota of cockatiels (Nymphicus hollandicus): a potential hazard to human health. J Med Microbiol. 2010; 59(6):718–723. Doi: https://doi.org/10.1099/jmm.0.017426-0.

  9. Rhimi W, Aneke CI, Annoscia G, et al. Virulence and in vitro antifungal susceptibility of Candida albicans and Candida catenulata from laying hens. Int Microbiol. 2020;24(1):57–63. https://doi.org/10.1007/s10123-020-00141-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lord AT, Mohandas K, Somanath S, Ambu S. Multidrug resistant yeasts in synanthropic wild birds. Ann Clin Microbiol Antimicrob. 2010;9(1):11.

    Article  Google Scholar 

  11. Cafarchia C, Iatta R, Danesi P, Camarda A, Capelli G, Otranto D. Yeasts isolated from cloacal swabs, feces, and eggs of laying hens. Med Mycol. 2019;57(3):340–5. (PMID: 29762763).

    Article  Google Scholar 

  12. Stillfried M, Gras P, Busch M, Börner K, Kramer-Schadt S, Ortmann S. Wild inside: Urban wild boar select natural, not anthropogenic food resource. PLoS ONE. 2017;12(4): e0175127.

    Article  Google Scholar 

  13. Pittiglio C, Khomenko S, Beltran-Alcrudo D. Wild boar mapping using population-density statistics: From polygons to high resolution raster maps. PLoS ONE. 2018;13(5): e0193295.

    Article  Google Scholar 

  14. Vittecoq M, Godreuil S, Prugnolle F. Antimicrobial resistance in wildlife. J Appl Ecol. 2016; 53(2), 519–529.

  15. Popova T, Todev I. Atypical mycosis in wild boars. Tradit mod vet med. 2018; 1(4): 21–24. Press, New York.

  16. Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

    CAS  Google Scholar 

  17. Kimura MA. Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.

    Article  CAS  Google Scholar 

  18. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.

    Article  CAS  Google Scholar 

  19. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C- content biases. Mol Biol Evol. 1992;9:678–87.

    CAS  PubMed  Google Scholar 

  20. Nei M, Kumar S, Molecular Evolution and Phylogenetics. Oxford University 2000.

  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30(12), 2725–2729.Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2001;356(1411):983–9. PMID: 11516376; PMCID: PMC1088493.

  22. Arendrup MC, Cuenca‐Estrella M, Lass‐Flörl, C, Hope W. EUCAST‐AFST. EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST‐AFST). Clin Microbiol Infect. 2012; 18(7), E246-E247. Doi: https://doi.org/10.1111/j.1469-0691.2012.03880.x.

  23. Arendrup MC, Friberg N, Mares M, Kahlmeter G, Meletiadis J, Guinea J. Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). How to interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European committee on antimicrobial susceptibility testing (EUCAST). Clin Microbiol Infect. 2020 ;26(11):1464–1472. Epub 2020 Jun 17. PMID: 32562861.

  24. Pfaller MA, Diekema DJ, Andes D, et al. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat. 2011;14(3):164–76.

    Article  CAS  Google Scholar 

  25. Thompson, George R, Nathan P. Wiederhold. Isavuconazole: a comprehensive review of spectrum of activity of a new triazole. Mycopathologia. 2010;170(5):291–313. Doi: https://doi.org/10.1007/s11046-010-9324-3.

  26. Lindberg E, Hammarström H, Ataollahy N, Kondori N. Species distribution and antifungal drug susceptibilities of yeasts isolated from the blood samples of patients with candidemia. Sci Rep. 2019;9(1):1–6. https://doi.org/10.1038/s41598-019-40280-8.

    Article  CAS  Google Scholar 

  27. Shamim SUMBUL, Ahmed SW, Siddiqui SA, Azhar, IQBAL. Superficial mycoses: a study performed for the isolation and identification of fungal species from infected patients. Pak J Pharm Sci. 2005; 22(1), 41–46.

  28. Lemel J, Truvé J, Söderberg B. Variation in ranging and activity behaviour of European wild boar Sus scrofa in Sweden. Wildlife Biol. 2003;9(1):29–36.

    Article  Google Scholar 

  29. Piattoni F, Ori, Francesca, Morara M, Iotti M, Zambonelli A. The role of wild boars in spore dispersal of hypogeous fungi. Acta Mycol. 2012;47 (2).

  30. Willis KA, Purvis JH, Myers ED, et al. Fungi form interkingdom microbial communities in the primordial human gut that develop with gestational age. FASEB J. 2019;33(11):12825–37.

    Article  CAS  Google Scholar 

  31. Limon JJ, Skalski JH, Underhill DM. Commensal fungi in health and disease. Cell host microbe. 2017;22(2):156–65.

    Article  CAS  Google Scholar 

  32. Acevedo P, Escudero MA, Muñoz R. Gortazar C. Factors affecting wild boar abundance across an environmental gradient in Spain. Acta Theriol. 2006; 51, 327–336.

  33. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20:133–63.

    Article  CAS  Google Scholar 

  34. Lass-Flörl C. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses. 2009;52(3):197–205.

    Article  Google Scholar 

  35. Cafarchia C, Camarda A, Romito D, et al. Occurrence of yeasts in cloacae of migratory birds. Mycopathologia. 2006;161:229–34.

    Article  CAS  Google Scholar 

  36. Trofa D, Gácser A, Nosanchuk JD. Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev. 2008; 21(4):606–625.

  37. Pfaller MA, Pappas PG, Wingard JR. Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis. 2006;43(S1):S3–14.

    Article  CAS  Google Scholar 

  38. Mercier V, Desnos-Ollivier M, Lamy A, Mahul M, Sasso M. Kazachstania slooffiae: An unexpected journey to a human pleural sample. Med Mycol J. 2021;31(2):101–9.

    Article  Google Scholar 

  39. Urubschurov V, Janczyk P, Pieper R, et al. Biological diversity of yeasts in the gastrointestinal tract of weaned piglets kept under different farm conditions. FEMS Yeast Res. 2008;8:1349–56.

    Article  CAS  Google Scholar 

  40. Wawrysiuk S, Rechberger T, Futyma K, Miotła P. Candida lusitaniae a case report of an intraperitoneal infection. Prz Menopauzalny. 2018;17(2):94.

    PubMed  PubMed Central  Google Scholar 

  41. Zhang X, Xu Z, Pei H, et al. Intraspecific variation and phylogenetic relationships are revealed by ITS1 secondary structure analysis and single-nucleotide polymorphism in Ganoderma lucidum. PLoS ONE. 2017;12(1): e0169042.

    Article  Google Scholar 

  42. Maganti H, Bartfai D, Xu J. Ecological structuring of yeasts associated with trees around Hamilton, Ontario, Canada. FEMS Yeast Res. 2012;12(1):9–19.

    Article  CAS  Google Scholar 

  43. Edelmann A, Krüger M, Schmid J. Genetic relationship between human and animal isolates of Candida albicans. J Clin Microbiol. 2005;43(12):6164–6.

    Article  CAS  Google Scholar 

  44. Bougnoux ME, Aanensen DM, Morand S, Théraud M, Spratt BG, d’Enfert C. Multilocus sequence typing of Candida albicans: strategies, data exchange and applications. Infect Genet Evol. 2004;4(3):243–52.

    Article  CAS  Google Scholar 

  45. Wrobel L, Whittington JK, Pujol C, et al. (Molecular phylogenetic analysis of a geographically and temporally matched set of Candida albicans isolates from humans and nonmigratory wildlife in central Illinois. Eukaryot Cell. 2008;7(9):1475–86.

    Article  CAS  Google Scholar 

  46. Gortázar C, Ferroglio E, Höfle U, Frölich K, Vicente J. Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res. 2007;53:241–56.

    Article  Google Scholar 

  47. Madhavan P, Jamal F, Pei CP, Othman F, Karunanidhi A, Ng KP. Comparative study of the effects of fluconazole and voriconazole on Candida glabrata, Candida parapsilosis and Candida rugosa biofilms. Mycopathologia. 2018;183(3):499–511.

    Article  CAS  Google Scholar 

  48. Marcos-Zambrano LJ, Gómez A, Sßnchez-Carrillo et al. Isavuconazole is highly active in á vitro against Candida species isolates but shows trailing effect. Clin Microbiol Infect. 2018; 24(12), 1343-e1.

  49. Ksiezopolska E, Gabaldón T. Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes. 2018;9(9):461.

    Article  Google Scholar 

  50. Summers KL, Foster Frey J, Arfken AM. Characterization of Kazachstania slooffiae, a Proposed Commensal in the Porcine Gut. J Fungi (Basel). 2021;7(2):146.

    Article  CAS  Google Scholar 

  51. Vervaeke S, Vandamme K, Boone E, De Laere E, Swinne D, Surmont I. A case of Candida lambica fungemia misidentified as Candida krusei in an intravenous drug abuser. Sabouraudia. 2008;46(8):853–6.

    Article  Google Scholar 

  52. Borman AM, Muller J, Walsh-Quantick J et. Fluconazole resistance in isolates of uncommon pathogenic yeast species from the United Kingdom. Antimicrob. Agents Chemother. 2019; 63(8), e00211–19.

  53. Castanheira M, Woosley LN, Diekema DJ, Messer SA, Jones RN, Pfaller MA. Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains. Antimicrob Agents Chemother. 2010;54(6):2655–9.

    Article  CAS  Google Scholar 

  54. Hirayama T, MiyazakiT, Yamagishi Y, et al. Clinical and microbiological characteristics of Candida guilliermondii and Candida fermentati. Antimicrob Agents Chemother. 2018;62(6), e02528–17. Doi: https://doi.org/10.1128/AAC.02528-17.

  55. Montagna MT, Caggiano G, Lovero G, et al. Epidemiology of invasive fungal infections in the intensive care unit: results of a multicenter Italian survey (AURORA Project). Infection. 2013;41(3):645–53. https://doi.org/10.1007/s15010-013-0432-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Caggiano G, Coretti C, Bartolomeo N, Lovero G, De Giglio O, Montagna MT. Candida bloodstream infections in Italy: changing epidemiology during 16 years of surveillance. Biomed Res Int. 2015; 256580.

  57. Castelo-Branco DDSCM, Paiva MDAN, Teixeira CEC et al. Azole resistance in Candida from animals calls for the One Health approach to tackle the emergence of antimicrobial resistance. Med Mycol. 2020;58(7):896–905.

  58. Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol. 2020;18, 319–331. Doi: https://doi.org/10.1038/s41579-019-0322-2.

Download references

Funding

This study has been partially financed by the Fondo de Investigaciones Sanitarias from the Instituto de Salud Carlos III (Grant Number PI20CIII/00043).

Author information

Authors and Affiliations

Authors

Contributions

Rhimi Wafa and Claudia Cafarchia conceptualised the study and wrote the manuscript. Sgroi Giovanni and Vincenzo Veneziano collected and verified animal information. Rhimi Wafa and Aneke Chioma Inyang performed the research. Giada Annoscia, Maria Stefania Latrofa and Ana Alastruey-Izquierdo have contributed on the identification of organism. Wafa Rhimi and Cafarchia Claudia and Ana Alastruey-Izquierdo analyzed and interpreted data. Cafarchia Claudia, Otranto Domenico and Ana Alastruey-Izquierdo revised, edited, and made intellectual inputs in the manuscripts. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Claudia Cafarchia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Statement

This study is a part of the project ‘Piano Emergenza Cinghiali in Campania—PECC 2016–2019’ (protocol number: Decreto Dirigenziale no. 210-Piano B7 DPAR 2018) that was approved by Institute for Environmental Protection and Research (ISPRA). The approval letter has been included in Supplementary Material.

Additional information

Handling Editor: Rui Kano.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhimi, W., Sgroi, G., Aneke, C.I. et al. Wild Boar (Sus scrofa) as Reservoir of Zoonotic Yeasts: Bioindicator of Environmental Quality. Mycopathologia 187, 235–248 (2022). https://doi.org/10.1007/s11046-021-00613-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-021-00613-6

Keywords

Navigation