Skip to main content

Advertisement

Log in

The Absence of PDR16 Gene Restricts the Overexpression of CaSNQ2 Gene in the Presence of Fluconazole in Candida albicans

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

In yeast, the PDR16 gene encodes one of the PITP proteins involved in lipid metabolism and is regarded as a factor involved in clinical azole resistance of fungal pathogens. In this study, we prepared Candida albicans CaPDR16/pdr16Δ and Capdr16Δ/Δ heterozygous and homozygous mutant strains and assessed their responses to different stresses. The CaPDR16 deletion strains exhibited increased susceptibility to antifungal azoles and acetic acid. The addition of Tween80 restored the growth of Capdr16 mutants in the presence of azoles. However, the PDR16 gene deletion has not remarkable influence on sterol profile or membrane properties (membrane potential, anisotropy) of Capdr16Δ and Capdr16Δ/Δ mutant cells. Changes in halotolerance of C. albicans pdr16 deletion mutants were not observed. Fluconazole treatment leads to increased expression of ERG genes both in the wild-type and Capdr16Δ and Capdr16Δ/Δ mutant cells, and the amount of ergosterol and its precursors remain comparable in all three strains tested. Fluconazole treatment induced the expression of ATP-binding cassette transporter gene CaSNQ2 and MFS transporter gene CaTPO3 in the wild-type strain but not in the Capdr16Δ and Capdr16Δ/Δ mutants. The expression of CaSNQ2 gene markedly increased also in cells treated with hydrogen peroxide irrespective of the presence of CaPdr16p. CaPDR16 gene thus belongs to genes whose presence is required for full induction of CaSNQ2 and CaTPO3 genes in the presence of fluconazole in C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berkow EL, Lockhart SR. Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist. 2017;10:237–45. https://doi.org/10.2147/IDR.S118892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao J, Wang H, Li Z, Wong A, Wang YZ, Guo Y, Lin X, Zeng G, Liu H, Wang Y. Candida albicans gains azole resistance by altering sphingolipid composition. Nat Commun. 2018;9:4495. https://doi.org/10.1038/s41467-018-06944-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pais P, Galocha M, Viana R, Cavalheiro M, Pereira D, Teixeira MC. Microevolution of the pathogenic yeasts Candida albicans and Candida glabrata during antifungal therapy and host infection. Microb Cell. 2019;6(3):142–59. https://doi.org/10.15698/mic2019.03.670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. MacPherson S, Akache B, Weber S, De Deken X, Raymond M, Turcotte B. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother. 2005;49(5):1745–52. https://doi.org/10.1128/AAC.49.5.1745-1752.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cowen LE, Steinbach WJ. Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot Cell. 2008;7(5):747–64. https://doi.org/10.1128/EC.00041-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anderson JB. Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol. 2005;3(7):547–56. https://doi.org/10.1038/nrmicro1179.

    Article  CAS  PubMed  Google Scholar 

  7. Coste A, Turner V, Ischer F, Morschhäuser J, Forche A, Selmecki A, Berman J, Bille J, Sanglard D. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics. 2006;172(4):2139–56. https://doi.org/10.1534/genetics.105.054767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science. 2006;313(5785):367–70. https://doi.org/10.1126/science.1128242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaur R, Ma B, Cormack BP. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci. 2007;104(18):7628–33. https://doi.org/10.1073/pnas.0611195104.

    Article  CAS  PubMed  Google Scholar 

  10. Dunkel N, Blaß J, Rogers PD, Morschhäuser J. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol. 2008;69(4):827–40. https://doi.org/10.1111/j.1365-2958.2008.06309.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heilmann CJ, Schneider S, Barker KS, Rogers PD, Morschhäuser J. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans. Antimicrob Agents Chemother. 2010;54(1):353–9. https://doi.org/10.1128/AAC.01102-09.

    Article  CAS  PubMed  Google Scholar 

  12. Hoot SJ, Smith AR, Brown RP, White TC. An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans. Antimicrob Agents Chemother. 2011;55(2):940–2. https://doi.org/10.1128/AAC.00995-10.

    Article  CAS  PubMed  Google Scholar 

  13. Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev. 2011;75(2):213–67. https://doi.org/10.1128/MMBR.00045-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE, Morschhäuser J, Rogers PD. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot Cell. 2012;11(10):1289–99. https://doi.org/10.1128/EC.00215-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saidane S, Weber S, De Deken X, St-Germain G, Raymond M. PDR16-mediated azole resistance in Candida albicans. Mol Microbiol. 2006;60:1546–62. https://doi.org/10.1111/j.1365-2958.2006.05196.x.

    Article  CAS  PubMed  Google Scholar 

  16. van den Hazel HB, Pichler H, do Valle Matta MA, Leitner E, Goffeau A, Daum G. PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J Biol Chem. 1999;274:1934–41. https://doi.org/10.1074/jbc.274.4.1934.

    Article  PubMed  Google Scholar 

  17. Simova Z, Poloncova K, Tahotna D, Holic R, Hapala I, Smith AR, White TC, Griac P. The yeast Saccharomyces cerevisiae Pdr16p restricts changes in ergosterol biosynthesis caused by the presence of azole antifungals. Yeast. 2013;30:229–41. https://doi.org/10.1016/j.bbalip.2014.07.014.

    Article  CAS  PubMed  Google Scholar 

  18. Goffa E, Balazfyova Z, Toth Hervay N, Simova Z, Balazova M, Griac P, Gbelska Y. Isolation and functional analysis of the KlPDR16 gene. FEMS Yeast Res. 2014;14:337–45. https://doi.org/10.1111/1567-1364.12102.

    Article  CAS  PubMed  Google Scholar 

  19. Toth Hervay N, Goffa E, Svrbicka A, Simova Z, Griac P, Jancikova I, Gaskova D, Morvova M, Sikurova L, Gbelska Y. Deletion of the PDR16 gene influences the plasma membrane properties of the yeast Kluyveromyces lactis. Can J Microbiol. 2015;61(4):273–9. https://doi.org/10.1139/cjm-2014-0627.

    Article  CAS  PubMed  Google Scholar 

  20. Kaur R, Castano I, Cormack BP. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother. 2004;48:1600–13. https://doi.org/10.1128/aac.48.5.1600-1613.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Culakova H, Dzugasova V, Perzelova J, Gbelska Y, Subik J. Mutation of the CgPDR16 gene attenuates azole tolerance and biofilm production in pathogenic Candida glabrata. Yeast. 2013;30:403–14. https://doi.org/10.1002/yea.2978.

    Article  CAS  PubMed  Google Scholar 

  22. Anderson JB, Sirjusingh C, Syed N, Lafayette S. Gene expression and evolution of antifungal drug resistance. Antimicrob Agents Chemother. 2009;53(5):1931–6. https://doi.org/10.1128/AAC.01315-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li X, Routt SM, Xie Z, Cui X, Fang M, Kearns MA, Bard M, Kirsch DR, Bankaitis VA. Identification of a novel family of nonclassic yeast phosphatidylinositol transfer proteins whose function modulates phospholipase D activity and Sec14p-independent cell growth. Mol Biol Cell. 2000;11:1989–2005. https://doi.org/10.1091/mbc.11.6.1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Griac P. Sec14 related proteins in yeast. Biochim Biophys Acta. 2007;1771:737–45. https://doi.org/10.1016/j.bbalip.2007.02.008.

    Article  CAS  PubMed  Google Scholar 

  25. Schnabl M, Oskolkova OV, Holič R, Brežná B, Pichler H, Zágoršek M, Kohlwein SD, Paltauf F, Daum G, Griač P. Subcellular localization of yeast Sec14 homologues and their involvement in regulation of phospholipid turnover. Eur J Biochem. 2003;270:3133–45. https://doi.org/10.1046/j.1432-1033.2003.03688.x.

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh R, Bankaitis VA. Phosphatidylinositol transfer proteins: negotiating the regulatory interface between lipid metabolism and lipid signaling in diverse cellular processes. BioFactors. 2011;37:290–308. https://doi.org/10.1002/biof.180.

    Article  CAS  PubMed  Google Scholar 

  27. Grabon A, Khan D, Bankaitis VA. Phosphatidylinositol transfer proteins and instructive regulation of lipid kinase biology. Biochim Biophys Acta. 2015;1851(6):724–35. https://doi.org/10.1016/j.bbalip.2014.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holic R, Simová Z, Ashlin T, Pevala V, Poloncova K, Tahotná D, Kutejova E, Cockroft S, Griac P. Phosphatidylinositol binding of Saccharomyces cerevisiae Pdr16p represents an essential feature of this lipid transfer protein to provide protection against azole antifungals. Biochim Biophys Acta. 2014;1842(10):1483–90. https://doi.org/10.1016/j.bbalip.2014.07.014.

    Article  CAS  PubMed  Google Scholar 

  29. Gietz RD, Schiestl RH. Transforming yeast with DNA. Methods Mol Cell. 1995;5:255–69.

    Google Scholar 

  30. Morschhäuser J, Staib P, Kohler G. Targeted gene deletion in Candida albicans wild-type strains by MPAR flipping. Methods Mol Med. 2005;118:35–44. https://doi.org/10.1385/1-59259-943-5:035.

    Article  PubMed  Google Scholar 

  31. Breivik ON, Owades JL. Spectrophotometric semimicro determination of ergosterol in yeast. Agric Food Chem. 1957;5:360–3.

    Article  CAS  Google Scholar 

  32. Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. Baltimore: Springer; 2006. https://doi.org/10.1007/978-0-387-46312-4.

    Book  Google Scholar 

  33. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhlet K. Current protocols in molecular biology. New York: Willey; 1989. https://doi.org/10.1002/mrd.1080010210. ISBN: 0-471-13781-2

    Book  Google Scholar 

  34. Culakova H, Dzugasova V, Valencikova R, Gbelska Y, Subik J. Stress response and expression of fluconazole resistance associated genes in the pathogenic yeast Candida glabrata deleted in the CgPDR16 gene. Microbiol Res. 2015;174:17–23. https://doi.org/10.1016/j.micres.2015.03.004.

    Article  CAS  PubMed  Google Scholar 

  35. Gaskova D, Brodska B, Herman P, Vecer J, Malinsky J, Sigler K, Benada O, Plasek J. Fluorescent probing of membrane potential in walled cells: diS-C3(3) assay in Saccharomyces cerevisiae. Yeast. 1998;14:1189–97. https://doi.org/10.1002/(sici)1097-0061(19980930)14:13%3c1189:aid-yea320%3e3.3.co;2-b.

    Article  CAS  PubMed  Google Scholar 

  36. Hendrych T, Kodedova M, Sigler K, Gaskova D. Characterization of the kinetics and mechanisms of inhibition of drugs interacting with the S. cerevisiae multidrug resistance pumps Pdr5p and Snq2p. BBA Biomembranes. 2009;1788:717–23. https://doi.org/10.1016/j.bbamem.2008.12.001.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma MD. Wave propagation in anisotropic generalized thermoelastic medium. J Therm Stress. 2006;29:329–42. https://doi.org/10.1080/01495730500499100.

    Article  Google Scholar 

  38. DeRisi J, van den Hazel B, Marc P, Balzi E, Brown P, Jacq C, Goffeau A. Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Lett. 2000;470:156–60. https://doi.org/10.1016/s0014-5793(00)01294-1.

    Article  CAS  PubMed  Google Scholar 

  39. Znaidi S, Barker KS, Weber S, Alarco AM, Liu TT, Boucher G, Rogers PD, Raymond M. Identification of the Candida albicans Cap1p regulon. Eukaryot Cell. 2009;8(6):806–20.

    Article  CAS  Google Scholar 

  40. Kobayashi D, Kondo K, Uehara N, Otokozawa S, Tsuji N, Yagihashi A, Watanabe N. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother. 2002;46(10):3113–7. https://doi.org/10.1128/aac.46.10.3113-3117.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thevissen K, Ayscough KR, Aerts AM, Du W, De Brucker K, Meert EM, Ausma J, Borgers M, Cammue BP, Francois IE. Miconazole induces changes in actin cytoskeleton prior to reactive oxygen species induction in yeast. J Biol Chem. 2007;282:21592–7. https://doi.org/10.1074/jbc.M608505200.

    Article  CAS  PubMed  Google Scholar 

  42. Griac P, Holic R, Tahotna D. Phosphatidylinositol-transfer protein and its homologues in yeast. Biochem Soc Trans. 2006;34(3):377–80. https://doi.org/10.1042/BST0340377.

    Article  CAS  PubMed  Google Scholar 

  43. Bankaitis VA, Mousley CJ, Schaaf G. The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem Sci. 2010;35(3):150–60. https://doi.org/10.1016/j.tibs.2009.10.008.

    Article  CAS  PubMed  Google Scholar 

  44. Ren J, Pei-Chen Lin C, Pathak MC, Temple BR, Nile AH, Mousley CJ, Duncan MC, Eckert DM, Leiker TJ, Ivanova PT, Myers DS, Murphy RC, Brown HA, Verdaasdonk J, Bloom KS, Ortlund EA, Neiman AM, Bankaitis VA. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis. Mol biol Cell. 2014;25(5):712–27. https://doi.org/10.1091/mbc.E13-11-0634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Znaidi S, De Deken X, Weber S, Rigby T, Nantel A, Raymond M. The zinc cluster transcription factor Tac1p regulates PDR16 expression in Candida albicans. Mol Microbiol. 2007;66:440–52. https://doi.org/10.1128/EC.00002-09.

    Article  CAS  PubMed  Google Scholar 

  46. Znaidi S, Weber S, Zin Al-Abdin O, Bomme P, Saidane S, Drouin S, Lemieux S, De Deken X, Robert F, Raymond M. Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryot Cell. 2008;7:836–47. https://doi.org/10.1128/EC.00070-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vanden Bossche H, Marichal P, Le Jeune L, Coene MC, Gorrens J, Cools W. Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans. Antimicrob Agents Chemother. 1993;37(10):2101–5. https://doi.org/10.1128/aac.37.10.2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marichal P, Gorrens J, Laurijssens L, Vermuyten K, Van Hove C, Le Jeune L, Verhasselt P, Sanglard D, Borgers M, Ramaekers FC, Odds F, Vanden BH. Accumulation of 3-ketosteroids induced by itraconazole in azole-resistant clinical Candida albicans isolates. Antimicrob Agents Chemother. 1999;43(11):2663–700 PMID: 10543744.

    Article  CAS  Google Scholar 

  49. Singh A, Prasad R. Comparative lipidomics of azole sensitive and resistant clinical isolates of Candida albicans reveals unexpected diversity in molecular lipid imprints. PLoS One. 2011;6(4):19266. https://doi.org/10.1371/journal.pone.0019266.

    Article  CAS  Google Scholar 

  50. Abe F, Hiraki T. Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. Biochim Biophys Acta. 2009;1788:743–52. https://doi.org/10.1016/j.bbamem.2008.12002.

    Article  CAS  PubMed  Google Scholar 

  51. Mahé Y, Lemoine Y, Kuchler K. The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J Biol Chem. 1996;271:25167. https://doi.org/10.1074/jbc.271.41.25167.

    Article  PubMed  Google Scholar 

  52. Torelli R, Posteraro B, Ferrari S, La Sorda M, Fadda G, Sanglard D, Sanguinetti M. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata. Mol Microbiol. 2008;68(1):186–201. https://doi.org/10.1111/j.1365-2958.2008.06143.x.

    Article  CAS  PubMed  Google Scholar 

  53. Costa C, Nunes J, Henriques A, Mira NP, Nakayama H, Chibana H, Teixeira MC. Candida glabrata drug:H+ antiporter CgTpo3 (ORF CAGL0I10384g): role in azole drug resistance and polyamine homeostasis. J Antimicrob Chemother. 2014;69:1767–76. https://doi.org/10.1093/jac/dku044.

    Article  CAS  PubMed  Google Scholar 

  54. Godinho CP, Prata CS, Pinto SN, Cardoso C, Bandarra NM, Fernandes F, Sá-Correia I. Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order. Sci Rep. 2018;8(1):7860. https://doi.org/10.1038/s41598-018-26128-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morschhäuser J, Barker KS, Liu TT, Bla BWJ, Homayouni R, Rogers PD. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 2007;3:e164. https://doi.org/10.1371/journal.ppat.0030164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Slovak Grant Agency of Science (Grant Nos. VEGA 2/0111/15 and VEGA 1/0697/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvetta Gbelska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Nilce M. Martinez-Rossi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11046_2020_459_MOESM1_ESM.tif

Suppl. Fig. 1. Growth of wild-type and isogenic Capdr16Δ deletion mutant strains in the presence of alkali metal cations. Tenfold serial dilutions of overnight cultures were prepared and 5 µl aliquots spotted onto YPD plates and incubated at 28 °C for 2 days. (TIF 4389 kb)

Suppl. 1 Table Oligonucleotides used in this study (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencova, A., Goffa, E., Morvova, M. et al. The Absence of PDR16 Gene Restricts the Overexpression of CaSNQ2 Gene in the Presence of Fluconazole in Candida albicans. Mycopathologia 185, 455–465 (2020). https://doi.org/10.1007/s11046-020-00459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-020-00459-4

Keywords

Navigation