Skip to main content

Advertisement

Log in

Genes Encoding Proteolytic Enzymes Fungalysin and Subtilisin in Dermatophytes of Human and Animal Origin: A Comparative Study

  • Original Paper
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Dermatophytes are among the most successful fungal pathogens in humans, but their virulence mechanisms have not yet been fully characterized. Dermatophytic fungi secrete proteases in vivo, which are responsible for fungal colonization and degradation of the keratinized tissue during infection. In the present study, we used PCR to investigate the presence of genes encoding fungalysins (MEP) and subtilisins (SUB) in three dermatophyte species whose incidence is increasing in Europe: the anthropophilic Trichophyton rubrum (n = 58), zoophilic Microsporum canis (n = 33), and Trichophyton benhamiae (n = 6). MEP2 and SUB4 genes were significantly correlated with T. rubrum; MEP3 and SUB1 were mostly frequently harbored by M. canis; and MEP1, 2, and 4 and SUB3–7 were most frequently harbored by T. benhamiae isolates (p < 0.05). Furthermore, MEP1–5 and SUB1–3 genes were significantly more prevalent among human clinical isolates of M. canis (n = 17) than among asymptomatic cat isolates of M. canis (n = 16; p < 0.05). Unidentified MEP and/or SUB genes in some isolates in the current study may suggest that other gene repertoires may be involved in the degradation of keratin. The presented analysis of the incidence of MEP and SUB virulence genes in three dermatophyte species of diverse origins provides an insight into the host–fungus interaction and dermatophyte pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Verma S, Madhu R. The great Indian epidemic of superficial dermatophytosis: An appraisal. Indian J Dermatol. 2017;62(3):227–36.

    PubMed  PubMed Central  Google Scholar 

  2. Ginter-Hanselmayer G, Weger W, Ilkit M, Smolle J. Epidemiology of tinea capitis in Europe: current state and changing patterns. Mycoses. 2007;50(suppl. 2):6–13.

    Article  Google Scholar 

  3. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51(suppl. 4):2–15.

    Article  Google Scholar 

  4. Zhan P, Liu W. The changing face of dermatophytic infections worldwide. Mycopathologia. 2017;182(1–2):77–86.

    Article  Google Scholar 

  5. Ilkit M, Durdu M. Tinea pedis: the etiology and global epidemiology of a common fungal infection. Crit Rev Microbiol. 2015;41(3):374–88.

    Article  Google Scholar 

  6. Gräser Y, Monod M, Bouchara JP, et al. New insights in dermatophyte research. Med Mycol. 2018;56(suppl. 1):2–9.

    Article  Google Scholar 

  7. Mercer DK, Stewart CS. Keratin hydrolysis by dermatophytes. Med Mycol. 2019;57(1):13–22.

    Article  Google Scholar 

  8. Martinez DA, Oliver BG, Graser Y, et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. mBio. 2012;3(5):e00259–12.

  9. Petrucelli MF, Peronni K, Sanches PR, et al. Dual RNA-seq analysis of Trichophyton rubrum and HaCat keratinocyte co-culture highlights important genes for fungal-host interaction. Genes (Basel). 2018;9(7):pii:E362.

  10. Monod M. Secreted proteases from dermatophytes. Mycopathologia. 2008;166(5–6):285–94.

    Article  Google Scholar 

  11. Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O. Secreted proteases from pathogenic fungi. Int J Med Microbiol. 2002;292(5–6):405–19.

    Article  CAS  Google Scholar 

  12. Lemsaddek A, Chambel L, Tenreiro R. Incidence of fungalysin and subtilisin virulence genes in dermatophytes. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, A. Mendéz-Vilas (ed.), Microbiology Book Series 2, Formatex, Badajoz, Spain. 2010:658–65.

  13. Jousson O, Léchenne B, Bontems O, et al. Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology. 2004;150(Pt 2):301–10.

    Article  CAS  Google Scholar 

  14. Nenoff P, Krüger C, Ginter-Hanselmayer G, Tietz HJ. Mycology—an update. Part 1: Dermatomycoses: causative agents, epidemiology and pathogenesis. J Dtsch Dermatol Ges. 2014;12(3):188–209.

    PubMed  Google Scholar 

  15. de Hoog GS, Dukik K, Monod M, et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia. 2017;182(1–2):5–31.

    Article  Google Scholar 

  16. Brouta F, Descamps F, Monod M, Vermout S, Losson B, Mignon B. Secreted metalloprotease gene family of Microsporum canis. Infect Immun. 2002;70(10):5676–83.

    Article  CAS  Google Scholar 

  17. Jousson O, Léchenne B, Bontems O, et al. Secreted subtilisin gene family in Trichophyton rubrum. Gene. 2004;339:79–88.

    Article  CAS  Google Scholar 

  18. Tarabees R, Sabry M, Abdeen E. Incidence of fungalysins virulence genes (MEP15) isolated from infected cases in Egypt. Int J Microbiol Res. 2013;4(2):180–7.

    Google Scholar 

  19. Burmester A, Shelest E, Glöckner G, et al. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol. 2011;12(1):R7.

    Article  CAS  Google Scholar 

  20. Staib P, Zaugg C, Mignon B, et al. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology. 2010;156(Pt 3):884–95.

    Article  CAS  Google Scholar 

  21. Zhang X, Wang Y, Chi W, et al. Metalloprotease genes of Trichophyton mentagrophytes are important for pathogenicity. Med Mycol. 2014;52(1):36–45.

    CAS  PubMed  Google Scholar 

  22. Zhang H, Rokas A, Slot JC. Two different secondary metabolism gene clusters occupied the same ancestral locus in fungal dermatophytes of the Arthrodermataceae. PLoS ONE. 2012;7(7):e41903.

    Article  CAS  Google Scholar 

  23. Turin L, Riva F, Galbiati G, Cainelli T. Fast, simple and highly sensitive double-rounded polymerase chain reaction assay to detect medically relevant fungi in dermatological specimens. Eur J Clin Invest. 2000;30(6):511–8.

    Article  CAS  Google Scholar 

  24. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134.

    Article  CAS  Google Scholar 

  25. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucl Acids Res. 2004;32(Web Server issue):W20–5.

    Article  CAS  Google Scholar 

  26. Robati AK, Khalili M, Hazaveh JSH, Bayat M. Assessment of the subtilisin genes in Trichophyton rubrum and Microsporum canis from dermatophytosis. Comp Clin Pathol. 2018;27(5):1343–7.

    Article  Google Scholar 

  27. Descamps F, Brouta F, Monod M, et al. Isolation of a Microsporum canis gene family encoding three subtilisin-like proteases expressed in vivo. J Invest Dermatol. 2002;119(4):830–5.

    Article  CAS  Google Scholar 

  28. Brasch J, Beck-Jendroschek V, Voss K, Uhrlaβ S, Nenoff P. Arthroderma benhamiae strains in Germany: Morphological and physiological characteristics of the anamorphs. Hautarzt. 2016;67(9):700–5.

    Article  CAS  Google Scholar 

  29. Peres NT, Sanches PR, Falcão JP, et al. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum. BMC Microbiol. 2010;10:39.

    Article  Google Scholar 

  30. Wang L, Ma L, Leng W, et al. Analysis of the dermatophyte Trichophyton rubrum expressed sequence tags. BMC Genomics. 2006;7:255.

    Article  Google Scholar 

  31. Tran VD, De Coi N, Feuermann M, et al. RNA Sequencing-based genome reannotation of the dermatophyte Arthroderma benhamiae and characterization of its secretome and whole gene expression profile during infection. mSystems. 2016;1(4):e00036–16.

    Article  Google Scholar 

  32. Shi Y, Niu Q, Yu X, et al. Assessment of the function of SUB6 in the pathogenic dermatophyte Trichophyton mentagrophytes. Med Mycol. 2016;54(1):59–71.

    CAS  PubMed  Google Scholar 

  33. Bitencourt TA, Macedo C, Franco ME, et al. Transcription profile of Trichophyton rubrum conidia grown on keratin reveals the induction of an adhesin-like protein gene with a tandem repeat pattern. BMC Genomics. 2016;17:249.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Professor Murat Durdu for his expert comments on preliminary draft of the manuscript.

Funding

This study was funded by the Research Fund of Mersin University (project no. 2015-AP3-1230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin Döğen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Vishnu Chaturvedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, E., Gonca, S., Kandemir, H. et al. Genes Encoding Proteolytic Enzymes Fungalysin and Subtilisin in Dermatophytes of Human and Animal Origin: A Comparative Study. Mycopathologia 185, 137–144 (2020). https://doi.org/10.1007/s11046-019-00367-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-019-00367-2

Keywords

Navigation