Skip to main content

Advertisement

Log in

Antifungal Activities of Different Extracts of Marine Macroalgae Against Dermatophytes and Candida Species

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Algae are bioactive natural resources, and due to the medical importance of superficial mycoses, we focused the action of macroalgae extracts against dermatophytes and Candida species. Seaweed obtained from the Riacho Doce beach, Alagoas (Brazil), were screened for the antifungal activity, through crude extracts using dichloromethane, chloroform, methanol, ethanol, water and chloroform and hexane fractions of green, brown and red algae in assays with standard strains of the dermatophytes Trichophyton rubrum, T. tonsurans, T. mentagrophytes, Microsporum canis, M. gypseum and yeasts Candida albicans, C. krusei, C. guilliermondi and C. parapsilosis. The M44-A and M27-A2/M38A manuals by CLSI were followed, and the minimum inhibitory concentration (MIC) ranged from 0.03 to 16.00 μg ml−1, and an inhibition halo of 10.00–25.00 mm was observed for dermatophytes, while for yeast, it was from 8.00 to 16.00 μg ml−1 and 10.00–15.00 mm. M. canis showed MIC of 0.03 μg ml−1 and the largest inhibition halo in T. rubrum (25.00 mm) through the use of the methanol extract. For C. albicans, dichloromethane, methanol and ethanol extracts formed the largest inhibition halo. The ethanol extract was shown to be the best inhibiting fungi growth, and chloroform and hexane fractions of H. musciformis inhibited the growth of all dermatophytes and C. albicans, yielding the conclusion that apolar extracts obtained from algae presented the best activity against important pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peres NTA, Maranhão FCA, Rossi A, Martinez-Rossi NM. Dermatophytes: host pathogen interaction and antifungal resistance. An Bras Dermatol. 2010;85:657–67.

    Article  PubMed  Google Scholar 

  2. Hay RJ, Jones RM. New molecular tools in the diagnosis of superficial fungal infections. Clin Dermatol. 2010;4:190–6.

    Article  Google Scholar 

  3. Mota CRA, Miranda KC, Lemos JA, Costa CR, Hasimoto LKS, Passos XS, Meneses HS, Silva MR. Comparison of in vitro activity of five antifungal agents against dermatophytes, using the agar dilution and broth microdilution methods. Rev Soc Bras Med Trop. 2009;42:250–4.

    PubMed  Google Scholar 

  4. Maranhão FC, Paião FG, Martinez-Rossi NM. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microbiol Pathog. 2007;43:166–72.

    Article  Google Scholar 

  5. Seebacher C, Bouchara JP, Mignon B. Updates on the epidemiology of dermatophyte infections. Mycopathologia. 2008;166:335–52.

    Article  PubMed  Google Scholar 

  6. Williams D, Lewis M. Pathogenesis and treatment of oral candidosis. J Oral Microbiol. 2011;3:5771.

    Google Scholar 

  7. Pappas PG, Kauffman CA, Andes D, Benjamin DK, Calandra TF, Edwards JE, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Soberl JD. Clinical practice guidelines for the management of candidiasis: 2009 update by the infectious diseases society of american. Clin Infect Dis. 2009;48:503–35.

    Article  PubMed  CAS  Google Scholar 

  8. Diogo HC, Sarpieri A, Melhem M, Pires MC. Evaluation of the disk-diffusion method to determine the in vitro efficacy of terbinafine against subcutaneous and superficial mycoses agents. An Bras Dermatol. 2010;85:324–30.

    Article  PubMed  Google Scholar 

  9. Tresoldi T, Barison EM, Pereira RM, Padoveze MC, Trabasso P. Risk factors associated witch the acquisition of multiresistant bacteria in pediatric nursery. J Pediatr. 2000;4:275–86.

    Google Scholar 

  10. Dovigo LN, Pavarina AC, Mima EGO, Giampaolo ET, Vergani CE, Bagnato VS. Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses. 2009;54:123–30.

    Article  Google Scholar 

  11. Mishra NN, Prasad T, Sharma N, Payasi A, Prasad R, Gupta DK, Singh R. Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hung. 2007;54:201–35.

    Article  PubMed  CAS  Google Scholar 

  12. Rizvi MA, Shameel M. Studies on the bioactivity and elementology of marine algae from the coast of Karachi. Pak Phyt Res. 2004;18:865–72.

    Article  Google Scholar 

  13. Smit AJ. Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol. 2004;16:245–62.

    Article  CAS  Google Scholar 

  14. Del Val GA, Platas G, Basilio A. Screening of antimicrobial activities in red, green and brown macoalgae from Gran Canaria (Gran Canary Islands, Spain). Int Microbiol. 2001; 4: 35–40.

    Google Scholar 

  15. Alves PM, Leite PAAS, Pereira JV, Pereira LF, Pereira MSV, Higino JS, Lima EO. Antifungal activity of the extract of Psidium guajava Linn. (“goiabeira”) upon leavens of Candida of the oral cavity: an in vitro evaluation. Braz J Pharm. 2006; 16: 192–6

    Google Scholar 

  16. Vellinga A, Murphy AW, Hanahoe B, Bennett K, Cormican MA. A multilevel analysis of trimethoprim and ciprofloxacin prescribing and resistance of uropathogenic Escherichia coli in general practice. J Antimicrob Chemother. 2010;65:1514–20.

    Article  PubMed  CAS  Google Scholar 

  17. Guimarães KG. Dihydroisocoumarin from Xyris pterygoblephara active against dermatophyte fungi. Phytochemistry. 2008;69:439–44.

    Article  PubMed  Google Scholar 

  18. Sequeira BJ, Vital MJ, Pohlit AM, Pararols IC, Caúper GS. Antibacterial and antifungal activity of extracts and exudates of the Amazonian medicinal tree Himatanthus articulatus (Vahl) Woodson (common name: sucuba). Mem Inst Oswaldo Cruz. 2009;104:659–61.

    Article  PubMed  Google Scholar 

  19. Ostrosky EA, Mizumoto MK, Lima MEL, Kaneko TM, Nishikawa SO, Freitas BR. Methods for evaluation of the antimicrobial activity and determination of minimum inhibitory concentration (MIC) of plant extracts. Rev Bras Farmacogn. 2008;18:301–7.

    Article  CAS  Google Scholar 

  20. Clinical and Laboratory Standard Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved Standard M38-A, Wayne, PA. 2002.

  21. Fernandez-Torres B, Cabanes FJ, Carrillo-Munoz AJ, Inza I, Guarro J. Collaborative evaluation of optimal antifungal susceptibility testing condition for dermatophytes. J Clin Microbiol. 2002; 40: 3999–4003.

    Google Scholar 

  22. Barros MES, Santos DA, Hamdan JS. Evaluation of susceptibility of Trichophyton mentagrophytes and Trichophyton rubrum clinical isolates to antifungal drugs using a modified CLSI microdilution method (M38-A). J Clin Microbiol. 2007; 56: 514–18.

    Google Scholar 

  23. Clinical and Laboratory Standard Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeast fungi. Approved Standard Document M27-A, Wayne PA. 2008.

  24. Chiheb I, Riadi H, Martinez-Lopez J, Dominguez SJF, Gomez VJA, Bouziane H, Kadiri M. Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. Afr J Biotechnol. 2009;8:1258–62.

    Google Scholar 

  25. Hellio C, Bremer G, Pons AM, Le Gal Y, Bourgougnon N. Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France. Appl Microbial Biotechnol. 2000;54:543–9.

    Article  CAS  Google Scholar 

  26. Ballesteros E, Martin D, Uriz MJ. Biological activity of extracts from some Mediterranean macrophytes. Bot Mar 1982; 35: 481–5.

    Google Scholar 

  27. Shanmughapriya S, Aseer M, Sugathan S, Kiran SJ, Seghal G, Kalimuthusamy N. Antimicrobial activity of seaweeds extracts against multiresistant pathogens. Ann Microbiol. 2008;58:535–41.

    Article  Google Scholar 

  28. Sekine H, Ohonuki N, Sadamasu K. The inhibitory effect of the crude extract from a seaweed of Dygenea simplex C. Agardh on the in vitro cytopathic activity of HIV-1 and it’s antigen production. Chem Pharm Bull. 1995;43:1580–4.

    Article  PubMed  CAS  Google Scholar 

  29. Bhakuni DS, Rawat DS. Bioactive marine natural products. USA: Anamaya Publishers and Springer; 2005. p. 346.

    Google Scholar 

  30. Melo VMM, Medeiros DA, Rios FJB, Castelar LIM, Carvalho AFFU. Antifungal properties of proteins (agglutinins) from the red algae Hypnea musciformis (Wulfen) Lamouroux. Bot Mar 1997; 40: 281–84

    Google Scholar 

  31. Cordeiro RA, Gomes VM, Carvalho AFFUM, Maciel VM. Effect of Proteins from the Red Seaweed Hypnea musciformis(Wulfen) Lamouroux on the Growth of Human Pathogen Yeasts. Braz Arch Biol Technol 2005; 49: 915–21.

    Google Scholar 

  32. Tuney BH, Cadirci D, Ünal A, Sukatar A. Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turk J Biol. 2006;20:171–5.

    Google Scholar 

  33. Salvador N, Garreta AG, Lavelli L, Ribera MA. Antimicrobial activity of Iberian macroalgae. Sci Mar. 2007;71:101–13.

    Article  Google Scholar 

  34. Orandy MA, Verde MJ, Martinez-Lozano SJ, Waksman NH. Active fractions from species of marine algae. Intern J Exp Bot 2004; 165–70.

Download references

Acknowledgments

We are grateful to Ana Maria Queijeiro Lopes (IQB/UFAL) and Eurípedes Alves Silva Filho (ICBS/UFAL) for suggestions, Júlio César Voltolini for support in statistical analysis and to Abilio Borghi for the English review on the manuscript. This work was supported by grants from the CAPES.

Conflict of interest

There is no conflict of interest in this paper, and all authors agree to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elica Amara Cecilia Guedes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guedes, E.A.C., dos Santos Araújo, M.A., Souza, A.K.P. et al. Antifungal Activities of Different Extracts of Marine Macroalgae Against Dermatophytes and Candida Species. Mycopathologia 174, 223–232 (2012). https://doi.org/10.1007/s11046-012-9541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-012-9541-z

Keywords

Navigation