Skip to main content

Advertisement

Log in

Molecular Analysis of Candida albicans Isolates from Clinical Specimens

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The aim of this study was to genotype Candida albicans strains isolated from various clinical specimens by using CA-INT-R and CA-INT-L primer pairs designed to span the region that includes the site of the transposable group-1 intron in the 25S rRNA gene. A total of 194 C. albicans isolates (28 invasive and 166 noninvasive) were genotyped. The frequencies of genotypes A, B, C and D were found as 51.0, 29.4, 19.1 and 0.5%, respectively. Statistically significant difference was determined between frequency of genotype distribution between invasive and noninvasive isolates (P < 0.001). Genotype C was more prevalent among invasive isolates while genotype A was in noninvasive ones. Furthermore, six different subtypes were determined among genotype A C. albicans isolates by restriction endonuclease analysis using a previously constructed differentiation scheme consisting of HaeIII and MspI digestions. This study demonstrated the genetic diversity of clinical isolates of C. albicans in our hospital.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sandhu GS, Cline BC, Stockman L, Roberts GD. Molecular probes for diagnosis of fungal infections. J Clin Microbiol. 1995;33:2913–9.

    CAS  PubMed  Google Scholar 

  2. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20:133–63.

    Article  CAS  PubMed  Google Scholar 

  3. Richardson M, Lass-Flörl C. Changing epidemiology of systemic fungal infections. Clin Microbial Infect. 2008;14(Suppl 4):5–24.

    Article  Google Scholar 

  4. Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol. 2007;45:321–46.

    Article  PubMed  Google Scholar 

  5. Tamura M, Watanabe K, Mikami Y, Yazawa K, Nishimura K. Molecular characterization of new clinical isolates of Candida albicans and C. dubliniensis in Japan: analysis reveals a new genotype of C. albicans with group I intron. J Clin Microbiol. 2001;39:4309–15.

    Article  CAS  PubMed  Google Scholar 

  6. Vrioni G, Bernard M. Molecular typing of Candida isolates from patients hospitalized in an intensive care unit. J Infect. 2001;42:50–6.

    Article  CAS  PubMed  Google Scholar 

  7. McCullough MJ, Clemons KV, Stevens DA. Molecular and phenotypic characterization of genotypic Candida albicans subgroups and comparison with Candida dubliniensis and Candida stellatoidea. J Clin Microbiol. 1999;37:417–21.

    CAS  PubMed  Google Scholar 

  8. Messer SA, Jones RN, Fritsche TR. International surveillance of Candida spp. and Aspergillus spp.: report from the SENTRY antimicrobial surveillance program (2003). J Clin Microbiol. 2006;44:1782–7.

    Article  CAS  PubMed  Google Scholar 

  9. Warren NG, Hazen KC. Candida, Cryptococcus, and other yeasts of medical importance. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, editors. Manual of clinical microbiology. 7th ed. Washington, DC: American Society for Microbiology; 1999. p. 1184–99.

    Google Scholar 

  10. Coleman DC, Rinaldi MG, Haynes KA, Rex JH, Summerbell RC, Anaissie EJ, et al. Importance of Candida species other than Candida albicans as opportunistic pathogens. Med Mycol. 1998;36(Suppl. 1):156–65.

    PubMed  Google Scholar 

  11. Johnson EM, Warnock DW, Luker J, Porter SR, Scully C. Emergence of azole drug resistance in Candida species from HIV infected patients receiving prolonged fluconazole therapy for oral candidosis. J Antimicrob Chemother. 1995;35:103–14.

    Article  CAS  PubMed  Google Scholar 

  12. Rex JH, Rinaldi MG, Pfaller MA. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother. 1995;39:1–8.

    CAS  PubMed  Google Scholar 

  13. Nucci M, Colombo AL. Emergence of resistant Candida in neutropenic patients. Braz J Infect Dis. 2002;6:124–8.

    Article  PubMed  Google Scholar 

  14. Khan ZU, Mustafa AS. Detection of Candida species by polymerase chain reaction (PCR) in blood samples of experimentally infected mice and patients with suspected candidemia. Microbiol Res. 2001;156:95–102.

    Article  CAS  PubMed  Google Scholar 

  15. De Baere T, Claeys G, Swinne D, Massonet C, Verschraegen G, Muylaert A, et al. Identification of cultured isolates of clinically important yeast species using fluorescent fragment length analysis of the amplified internally transcribed rRNA spacer 2 region. BMC Microbiol. 2002;2:21.

    Article  PubMed  Google Scholar 

  16. Pfaller MA. Epidemiology of fungal infections: the promise of molecular typing. Clin Infect Dis. 1995;20:1535–9.

    CAS  PubMed  Google Scholar 

  17. Bretange S, Costa JM, Besmond C, Casique R, Calderone R. Microsatellite polymorphism in the promoter sequence of the elongation factor 3 gene of Candida albicans as the basis for a typing system. J Clin Microbiol. 1997;35:1777–80.

    Google Scholar 

  18. Soll DR. The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev. 2000;13:332–70.

    Article  CAS  PubMed  Google Scholar 

  19. Espinel-Ingroff A, Vazquez JA, Boikov D, Pfaller MA. Evaluation of DNA-based typing procedures for strain categorization of Candida spp. Diag Microbiol Infect Dis. 1999;33:231–9.

    Article  CAS  Google Scholar 

  20. Mc Cullough MJ, Clemons KV, Mc Cusker JH, Stevens DA. Intergenic transcribed spacer PCR ribotyping for differentiation of Saccharomyces species and interspecific hybrids. J Clin Microbiol. 1998;36:1035–8.

    CAS  Google Scholar 

  21. Maleska R, Clark-Walker GD. Yeasts have a four-fold variation in ribosomal DNA copy number. Yeast. 1993;9:53–8.

    Article  Google Scholar 

  22. Sullivan D, Coleman D. Candida dubliniensis: characteristics and identification. J Clin Microbiol. 1998;36:329–34.

    CAS  PubMed  Google Scholar 

  23. Sullivan DJ, Moran G, Donnelly S, Gee S, Pinjon E, McCartan B, et al. Candida dubliniensis: an update. Rev Iberoamer Micol. 1999;16:72–6.

    CAS  Google Scholar 

  24. Millar BC, Moore JE, Xu J, Walker MJ, Hedderwick S, McMullan R. Genotypic subgrouping of Candida albicans and Candida dubliniensis by 25S intron analysis. Lett Appl Microbiol. 2002;35:102–6.

    Article  CAS  PubMed  Google Scholar 

  25. Kumar CPG, Hanafy AM, Katsu M, Mikami Y, Menon T. Moleculer analysis and susceptibility profiling of Candida albicans isolated from immunocompromised patients in South India. Mycopathologia. 2006;161:153–9.

    Article  Google Scholar 

  26. Tay ST, Chai HC, Na SL, Ng KP, Soo-Hoo TS. Molecular subtyping of clinical isolates of Candida albicans and identification of Candida dubliniensis in Malaysia. Mycopathologia. 2005;159:325–9.

    Article  CAS  PubMed  Google Scholar 

  27. Karahan ZC, Güriz H, Ağırbaşlı H, Balaban N, Göçmen JS, Aysev D, et al. Genotype distribution of Candida albicans isolates by 25S intron analysis with regard to invasiveness. Mycoses. 2004;47:465–9.

    Article  CAS  PubMed  Google Scholar 

  28. Millar BC, Xu J, McMullan R, Walker MJ, Hedderwick S, Moore JE. Frequency and distribution of group 1 intron genotypes of Candida albicans colonising critically ill patients. Br J Biomed Sci. 2005;62:24–7.

    CAS  PubMed  Google Scholar 

  29. Qi QG, Hu T, Zhou XT. Frequency, species and molecular characterization of oral Candida in hosts of different age in China. J Oral Pathol Med. 2005;34:352–6.

    Article  CAS  PubMed  Google Scholar 

  30. Karahan ZC, Akar N. Subtypes of genotype A Candida albicans isolates determined by restriction endonuclease and sequence analyses. Microbiol Res. 2005;160:361–6.

    Article  CAS  PubMed  Google Scholar 

  31. McCullough MJ, Clemons KV, Stevens DA. Molecular epidemiology of the global and temporal diversity of Candida albicans. Clin Infect Dis. 1999;29:1220–5.

    Article  CAS  PubMed  Google Scholar 

  32. Koyuncu E, Dolapçı I, Karahan C, Tekeli A, Akan OA. Genotype distribution of Candida albicans strains isolated from invasive and noninvasive samples. Ankara Unv Tıp Fak Mecm. 2007;60:53–6 (Article in Turkish).

    Google Scholar 

  33. Luu NL, Cowen LE, Sirjusingh C, Kohn LM, Anderson JB. Multilocus genotyping indicates that the ability to invade the bloodstream is widespread among Candida albicans isolates. J Clin Microbiol. 2001;39:1657–60.

    Article  CAS  PubMed  Google Scholar 

  34. Dalle F, Franco N, Lopez J, Vagner O, Caillot D, Chavanet P, et al. Comparative genotyping of Candida albicans bloodstream and nonbloodstream isolates at a polymorphic microsatellite locus. J Clin Microbiol. 2000;38:4554–9.

    CAS  PubMed  Google Scholar 

  35. Lunel FV, Liciardello L, Stefani S, Verbrugh HA, Melchers WJG, Meis JFGM, et al. Lack of consistent short sequence repeat polymorphisms in genetically homologous colonizing and invasive Candida albicans strains. J Bacteriol. 1998;180:3771–8.

    CAS  PubMed  Google Scholar 

  36. Mercure S, Montplaisir S, Lemay G. Correlation between the presence of a self-splicing intron in the 25S rDNA of C. albicans and strains susceptibility to 5-fluorocytosine. Nucleic Acids Res. 1993;21:6020–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Fund of Pamukkale University (Project no. 2008TPF007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melahat Gurbuz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurbuz, M., Kaleli, I. Molecular Analysis of Candida albicans Isolates from Clinical Specimens. Mycopathologia 169, 261–267 (2010). https://doi.org/10.1007/s11046-009-9263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9263-z

Keywords

Navigation