Skip to main content
Log in

Transformation of Fusarium oxysporum by particle bombardment and characterisation of the resulting transformants expressing a GFP transgene

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Fusarium is the causative agent of a variety of economically significant vascular wilt diseases of vegetables, flowers and field crops. The completion of the first Fusarium genome and the availability of an EST database now provides a platform for both forward and reverse genetic approaches to ascribe gene function in this phytopathogen. To underpin these strategies effective gene transfer procedures will be required. Here we describe an efficient and robust procedure for Fusarium oxysporum transformation based on particle bombardment. We utilised this procedure to introduce a chimeric gene comprised of the Aspergillus nidulans Pgdp promoter fused to a GFP reporter gene. A transformation efficiency of 45 transformants per μg of plasmid DNA was routinely achieved. The Pgdp promoter directed strong cytoplasmic expression of the GFP marker in transformed F. oxysporum monitored via fluorescence and confocal microscopy. A pathogenicity assay undertaken on Arabidopsis seedlings with selected transformants revealed that virulence was retained following transformation. Moreover, in a similar fashion to wild-type F. oxysporum, these transformants activated three distinct Arabidopsis defence gene promoter::luciferase fusions, which defined specific defence gene subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrios, GN. Diseases caused by Ascomycetes and imperfect fungi. In: Plant Pathology. London: Academic Press, 1981: 408–422.

    Google Scholar 

  2. Armstrong GM, Armstrong JK. Fusarium: disease, biology and taxonomy. In: Nelson PE, Toussoun TA, Cook RJ, eds. Formae speciales and races of Fusarium oxysporum causing wilt diseases. Pennsylvania: Pennsylvania State University Press, University Park, 1981: 391–399.

    Google Scholar 

  3. Booth, C. The genus Fusarium. London: Eastern Press, 1971: 237–277.

    Google Scholar 

  4. Arie T, Goutha S, Shimazaki S, Kamakura T, Kimura N, Inoue M, Takio K, Ozaki A, Yoneyama K, Yamaguchi Y. Immunological detection of endopolygalacturonase secretion by Fusarium oxysporum in plant tissue and sequencing of its encoding gene. Ann Phytopathol Soc Jpn 1998; 64: 7–15.

    Google Scholar 

  5. Di Pietro A, Roncero MIG. Cloning expression and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant-Microbe Interact 1998; 11: 91–98.

    PubMed  Google Scholar 

  6. Huertas-Gonzälez MD, Ruiz-Roldän MC, Maceira FIG, Roncero MIG, Di Pietro A. Cloning and characterization of pl1 encoding an in planta-secreted pectate lyase of Fusarium oxysporum. Curr Genet 1999; 35: 36–40.

    Article  PubMed  Google Scholar 

  7. Ruiz-Roldán MC, Di Pietro A, Huertas-González MD, Roncero MIG. Two xylanase genes of the vascular wilt pathogen Fusarium oxysporum are differentially expressed during infection of tomato plants. Mol Gen Genet 1999; 261: 530–536.

    Article  PubMed  Google Scholar 

  8. García-Maceira FI, Di Pietro A, Roncero MIG. Cloning and disruption of pgx4 encoding an in planta expressed exopolygalacturonase from Fusarium oxysporum. Mol Plant-Microbe Interact 2000; 13: 359–365.

    PubMed  Google Scholar 

  9. Roldán-Arjona T, Pérez-Espinosa A, Ruiz-Rubio M. Tomatinase from Fusarium oxysporum f. sp. lycopersici defines a new class of saponinases. Mol Plant-Microbe Interact 1999; 12: 852–861.

    PubMed  Google Scholar 

  10. Kikkert JR. The Biolistic® PDS-1000/He device. Plant Cell Tiss Org 1993; 33: 221–226.

    Google Scholar 

  11. Forbes PJ, Millam S, Hooker JE, Harrier LA. Transformation of the arbuscular mycorrhiza Gigaspora rosea by particle bombardment. Mycol Res 1998; 102: 497–501.

    Article  Google Scholar 

  12. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory: Cold Spring Harbor, New York, 1989.

    Google Scholar 

  13. Maor R, Puyesky M, Horwitz BA, Sharon A. Use of green fluorescent protein (GFP) for studying development and fungal-plant interaction in Cochliobolus heterostrophus. Mycol Res 1998; 102: 491–496.

    Article  Google Scholar 

  14. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

    PubMed  Google Scholar 

  15. Epple P, Apel K, Bohlman H. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 1997; 9: 509–520.

    Article  PubMed  Google Scholar 

  16. Grant J, Yun, B-W, Loake, GJ. Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J 2000; 24: 569–582.

    Article  PubMed  Google Scholar 

  17. Thomma BPHJ, Eggermount K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammune BPA, Broekaert WF. Separate jasmonate-dependent and salicylate-dependent defense response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 1998; 95: 15107–15111.

    Article  PubMed  Google Scholar 

  18. Murray SL, Thomson C, Chini A, Read ND Loake, GJ. Characterization of a novel, defense-related Arabidopsis mutant, cir1, isolated by luciferase imaging. Mol Plant-Microbe Interact 2002; 15: 557–566.

    PubMed  Google Scholar 

  19. Tani H, Nurmberg P, Chini A, Chen X, Santamaria M, Gilroy E, Grant J, Birch P, Loake GJ. Plant gene discovery by activation tagging. Funct Integ Genom. In press.

  20. Kistler, HC, Benny, UK. Genetic transformation of the fungal plant wilt pathogen, Fusarium oxysporum. Curr Genet 1988; 13: 145–149.

    Article  Google Scholar 

  21. Lagopodi AL, Ram, AFJ, Lamers GEM, Punt PJ, Van den Hondel CAMJJ, Lugtenberg BJJ, Bloemberg, GV. Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. Radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant-Microbe Interact 2002; 15: 172–179.

    PubMed  Google Scholar 

  22. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S. Agrobacterium-mediated transformation ofFusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathol 2001; 91: 173–180.

    Google Scholar 

  23. Feldmann KA. T-DNA insertion mutagenesis in Arabidopsis; mutational spectrum. Plant J 1991; 1: 71–81.

    Article  Google Scholar 

  24. Koncz C, Németh K, R,dei GP, Schell J. T-DNA instertional mutagenesis in Arabidopsis. Plant Mol Biol 1992; 20: 963–976.

    Article  PubMed  Google Scholar 

  25. Castle LA, Errampalli, D, Atherton TL, Franzman LH, Yoon E, Meinke DW. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 1993; 241: 504–514.

    Article  PubMed  Google Scholar 

  26. de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotech 1998; 16: 839–842.

    Article  Google Scholar 

  27. Hilber UW, Bodmer M, Smith FD, Köller W. Biolistic transformation of conidia of Botryotinia fukeliana. Curr Genet 1994; 25: 124–127.

    Article  PubMed  Google Scholar 

  28. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 1995; 20: 448–455.

    Article  PubMed  Google Scholar 

  29. Lagopodi AL, Ram AFJ, Lamers GEM, Punt PJ, Van den Hondel CAMJJ, Lugtenberg BJJ, Bloemberg GV. Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. Radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant-Microbe Interact 2002; 15: 172–179.

    PubMed  Google Scholar 

  30. Spellig, T, Bottin, A, Kahmann, R. Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilagos maydis. Mol Gen Genet 1996; 252: 503–509.

    PubMed  Google Scholar 

  31. Wymelenberg AJV, Cullen D, Spear RN, Schoenike B, Andrews JH. Expression of green fluorescent protein in Aureobasidium pullulans and quantification of the fungus on leaf surface. Biotechniques 1997; 23: 686–690.

    PubMed  Google Scholar 

  32. Lu S, Lyngholm L, Yang G, Bronson C, Yoder OC, Turgen BG. Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction-mediated integration. Proc Natl Acad. Sci 1994; 91: 12649–12653.

    PubMed  Google Scholar 

  33. Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant-Microbe Interact 1998; 11: 404–412.

    PubMed  Google Scholar 

  34. Namiki F, Matsunga M, Okunda M, Inoue I, Nishi K, Fujita Y, Tsuge T. Mutation of arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum F. sp. melonsis. Mol Plant-Microbe Interact 2001; 14: 580–584.

    PubMed  Google Scholar 

  35. Di Pietro A, García-Maceira FI, Méglecz E, Roncero IG. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 2001; 39: 1140–1152.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Loake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aboul-Soud, M.A.M., Yun, BW., Harrier, L.A. et al. Transformation of Fusarium oxysporum by particle bombardment and characterisation of the resulting transformants expressing a GFP transgene. Mycopathologia 158, 475–482 (2004). https://doi.org/10.1007/s11046-005-5370-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-005-5370-7

Key words

Navigation