Skip to main content
Log in

A locally convergent Jacobi iteration for the tensor singular value problem

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Multi-linear functionals or tensors are useful in study and analysis multi-dimensional signal and system. Tensor approximation, which has various applications in signal processing and system theory, can be achieved by generalizing the notion of singular values and singular vectors of matrices to tensor. In this paper, we showed local convergence of a parallelizable numerical method (based on the Jacobi iteration) for obtaining the singular values and singular vectors of a tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Brett, W. B., & Tamara, G. K., et al. (2007). Matlab tensor toolbox version 2.2. Available online, January 2007.

  • Belzen, F. V. (2011). Approximation of multi-variable signals and systems: A tensor decomposition approach. Ph.D. thesis, Technische Universiteit Eindhoven.

  • Cartan, H. P. (1971). Differential calculus. London: Hermann, Paris and Kershaw Publishing Company.

  • Chang, J., Sun, W., & Chen, Y. (2010). A modified newton’s method for best rank-one approximation to tensors. Applied Mathematics and Computation, 216(6), 1859–1867.

    Article  MathSciNet  MATH  Google Scholar 

  • Conway, J. B. (1990). A course in functional analysis (second ed.). Berlin: Springer.

    MATH  Google Scholar 

  • da Silva, A. P., Comon, P., & de Almeida, A. L. F. (2016). A finite algorithm to compute rank-1 tensor approximations. IEEE Signal Processing Letters, 23(7), 959–963.

    Article  Google Scholar 

  • De Lathauwer, L. (1997). Signal processing based on multilinear algebra. Ph.D. thesis, Katholieke Universiteit Leuven.

  • De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21, 1253–1278.

    Article  MathSciNet  MATH  Google Scholar 

  • De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). On the best rank-1 and rank-(\(R_1\), \(R_2\),\(\cdots \),\(R_N\)) approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applications, 21(4), 1324–1342.

    Article  MathSciNet  MATH  Google Scholar 

  • Hillar, C. J., & Lim, L. (2013). Most tensor problems are np-hard. Journal of the ACM, 60(6), 45:1–45:39.

    Article  MathSciNet  MATH  Google Scholar 

  • Kofidis, E., & Regalia, P. A. (2001). Tensor approximation and signal processing applications. In V. Olshevsky (Ed.), Structured matrices in mathematics, computer science, and engineering, volume 1 of contemporary mathematics. Providence: American Mathematical Society.

    Google Scholar 

  • Kolda, T. G., & Mayo, J. R. (2011). Shifted power method for computing tensor eigenpairs. SIAM Journal on Matrix Analysis and Applications, 32(4), 1095–1124.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolda, T. G. (2001). Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis and Applications, 23(1), 243–255.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455–500.

    Article  MathSciNet  MATH  Google Scholar 

  • Lim, L. H. (2005) Singular values and eigenvalues of tensors: A variational approach. In Proceeding of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 129–132.

  • Luenberger, D. G., & Ye, Y. (2008). Linear and nonlinear programming. Berlin: Springer.

    MATH  Google Scholar 

  • Ok, E. A. (2007). Real analysis with economic applications. Princeton: Princeton University Press.

  • Qi, L. (2005). Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation, 40, 1302–1324.

    Article  MathSciNet  MATH  Google Scholar 

  • Qi, L., Sun, W., & Wang, Y. (2007). Numerical multilinear algebra and its applications. Frontiers of Mathematics in China, 2(4), 501–526.

    Article  MathSciNet  MATH  Google Scholar 

  • Rynne, B. P., & Youngson, M. A. (2000). Linear functional analysis (first ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Shekhawat, H. S. & Weiland, S. (2014) On the problem of low rank approximation of tensors. In Proceedings of 21th MTNS Symposium, Groningen, The Netherlands.

  • Shi, X., Ling, H., Xing, J., & Hu, W. (2013) Multi-target tracking by rank-1 tensor approximation. In 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2387–2394.

  • Shifrin, T. (2005). Multivariable mathematics: Linear algebra, multivariable calculus, and manifolds. London: Wiley.

    Google Scholar 

  • Uschmajew, A. (2012). Local convergence of the alternating least squares algorithm for canonical tensor approximation. SIAM Journal on Matrix Analysis and Applications, 33(2), 639–652.

    Article  MathSciNet  MATH  Google Scholar 

  • Weiland, S., & Belzen, F. V. (2010). Singular value decompositions and low rank approximations of tensors. IEEE Transactions on Signal Processing, 58(3), 1171–1182.

    Article  MathSciNet  Google Scholar 

  • Yang, Y., Feng, Y., Huang, X., & Suykens, J. A. K. (2016). Rank-1 tensor properties with applications to a class of tensor optimization problems. SIAM Journal on Optimization, 26(1), 171–196.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, T., & Golub, G. H. (2001). Rank-one approximation to high order tensors. SIAM Journal on Matrix Analysis and Applications, 23(2), 534–550.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanumant Singh Shekhawat.

Additional information

The results reported in this article were originally presented at the 14th annual European Control Conference, in Linz, Austria, July 15–17, 2015 with title ’A novel computational scheme for low multi-linear rank approximations of tensors’.

A Fréchet differentiation

A Fréchet differentiation

Let \(\mathbb {X}\) and \(\mathbb {Y}\) be Banach spaces. The Fréchet derivative of an operator \(F:\mathbb {X}\rightarrow \mathbb {Y}\) at x is the unique linear operator \(D_{F(x)}:\mathbb {X}\rightarrow \mathbb {Y}\) such that

$$\begin{aligned} \lim _{\Vert h\Vert \rightarrow 0} \frac{F(x+h)-F(x)-D_{F(x)}(h)}{\Vert h\Vert } =0. \end{aligned}$$

For details, see Ok (2007).

Double (Fréchet) differentiation of F at x in directions, first in y and then z, is the unique bilinear operator \(D^2_{F(x)}(y,z)\) given by

$$\begin{aligned} D^2_{F(x)}(y,z) := D_{D_{F(x)}(y)}(z). \end{aligned}$$

Note that \(D^2_{F(x)}(y,z) = D^2_{F(x)}(z,y)\) (Cartan 1971, Theorem 5.1.1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhawat, H.S., Weiland, S. A locally convergent Jacobi iteration for the tensor singular value problem. Multidim Syst Sign Process 29, 1075–1094 (2018). https://doi.org/10.1007/s11045-017-0485-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0485-9

Keywords

Navigation