Skip to main content
Log in

Novel explanation, modeling and realization of Lattice Boltzmann methods for image processing

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Image processing is a cost-effective technology in various applications. Partial differential equation (PDE) methods are popular when realizing image processing. However, computational speed of existing PDE methods cannot meet requirements in practice. To solve this problem, scholars proposed a novel method: Lattice Boltzmann (LB) model. Although LB model has already been applied for image denoising, inpainting and segmentation, its explanation is not systematically concluded and a general LB model for image processing is missing, which resulted in previous investigations difficult to be scaled up. The purpose of this paper is to explore the explanation of LB model for image processing, and propose a general LB mathematical model. To test the feasibility of the proposed LB model, we did several comparison experiments. The comparison results showed that the proposed LB model augmented CPU calculating speed and kept good image processing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Angenent, S., Pichon, E., & Tannenbaum, A. (2006). Mathematical methods in medical image processing. Bulletin of the American Mathematical Society, 43(3), 365–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Au, W., & Takei, R. (2001). Image inpainting with the Navier–Stokes equations. Final Report, APMA, 930.

  • Balla-Arabé, S., & Gao, X. (2012). Image multi-thresholding by combining the lattice Boltzmann model and a localized level set algorithm. Neurocomputing, 93, 106–114.

    Google Scholar 

  • Balla-Arabé, S., & Gao, X. (2013). A multiphase entropy-based level set algorithm for mr breast image segmentation using lattice Boltzmann model. In Intelligent science and intelligent data, engineering (pp. 8–16). Berlin: Springer.

  • Balla-Arabé, S., Gao, X., & Wang, B. (2013). Gpu accelerated edge-region based level set evolution constrained by 2d gray-scale histogram. IEEE Transactions on Image Processing, 22(7), 2688–2698.

    Article  MathSciNet  Google Scholar 

  • Balla-Arabé, S., Wang, B., & Gao, X. (2011). Level set region based image segmentation using lattice Boltzmann method. In 2011 Seventh international conference on computational intelligence and security (CIS) (pp. 1159–1163), IEEE.

  • Barcelos, C. A. Z., & Batista, M. A. (2003). Image inpainting and denoising by nonlinear partial differential equations. In XVI Brazilian symposium on Computer graphics and image processing, 2003 (SIBGRAPI 2003) (pp. 287–293), IEEE.

  • Benzi, R., Succi, S., & Vergassola, M. (1992). The lattice Boltzmann equation: Theory and applications. Physics Reports, 222(3), 145–197.

    Article  Google Scholar 

  • Bertalmio, M., Sapiro, G., Caselles, V., & Ballester, C. (2000). Image inpainting. In Proceedings of the 27th annual conference on computer graphics and interactive techniques (pp. 417–424). ACM Press/Addison-Wesley.

  • Carleer, A., Debeir, O., & Wolff, E. (2005). Assessment of very high spatial resolution satellite image segmentations. Photogrammetric Engineering and Remote Sensing, 71(11), 1285–1294.

    Article  Google Scholar 

  • Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61–79.

    Article  MATH  Google Scholar 

  • Chan, T., & Shen, J. (2005). Image processing and analysis: Variational, PDE, wavelet, and stochastic methods, Siam.

  • Chan, T. F., & Shen, J. (2001). Nontexture inpainting by curvature-driven diffusions. Journal of Visual Communication and Image Representation, 12(4), 436–449.

    Article  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Chang, Q. (2013). Efficient algorithm for isotropic and anisotropic total variation deblurring and denoising. Journal of Applied Mathematics, 2013, 1–14.

    Google Scholar 

  • Chang, Q., & Yang, T. (2009). A lattice Boltzmann method for image denoising. IEEE Transactions on Image Processing, 18(12), 2797–2802.

    Article  MathSciNet  Google Scholar 

  • Chao, S.-M., & Tsai, D.-M. (2010). An improved anisotropic diffusion model for detail-and edge-preserving smoothing. Pattern Recognition Letters, 31(13), 2012–2023.

    Article  Google Scholar 

  • Chen, Y. (2010). A lattice-Boltzmann method for image inpainting. In 2010 3rd International congress on image and signal processing (CISP) (vol. 3, pp. 1222–1225), IEEE.

  • Chen, Y., Yan, Z., & Qian, Y. (2008). An anisotropic diffusion model for medical image smoothing by using the lattice Boltzmann method. In 7th Asian-Pacific conference on medical and biological engineering (vol. 19, pp. 255–259). Berlin: Springer.

  • Chen, Y., Yan, Z., & Shi, J. (2007). Application of lattice Boltzmann method to image segmentation. In 29th Annual international conference of the IEEE engineering in medicine and biology society, 2007 (EMBS 2007) (pp. 6561–6564), IEEE.

  • Criminisi, A., Pérez, P., & Toyama, K. (2003). Object removal by exemplar-based inpainting. In IEEE computer society conference on computer vision and pattern recognition, 2003. Proceedings 2003 (vol. 2, pp. 1–8), IEEE.

  • Eggels, J., & Somers, J. (1995). Numerical simulation of free convective flow using the lattice-Boltzmann scheme. International Journal of Heat and Fluid Flow, 16(5), 357–364.

    Article  Google Scholar 

  • Filippova, O., Succi, S., Mazzocco, F., Arrighetti, C., Bella, G., & Hänel, D. (2001). Multiscale lattice Boltzmann schemes with turbulence modeling. Journal of Computational Physics, 170(2), 812–829.

    Article  MATH  Google Scholar 

  • Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2002). Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing, 11(7), 689–703.

    Article  Google Scholar 

  • Grunau, D., Chen, S., & Egger, K. (1993). A lattice Boltzmann model for multi-phase fluid flows. arXiv, preprint comp-gas/9303001, 2.

  • Hou, S., Shan, X., Zou, Q., Doolen, G. D., & Soll, W. E. (1997). Evaluation of two lattice Boltzmann models for multiphase flows. Journal of Computational Physics, 138(2), 695–713.

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, R., Wu, H., & Cheng, P. (2013). A new lattice Boltzmann model for solid–liquid phase change. International Journal of Heat and Mass Transfer, 59, 295–301.

    Article  MATH  Google Scholar 

  • Jawerth, B., Lin, P., & Sinzinger, E. (1999). Lattice Boltzmann models for anisotropic diffusion of images. Journal of Mathematical Imaging and Vision, 11(3), 231–237.

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang, C.-F., Chang, C.-C., & Huang, S.-H. (2012). Regions of interest extraction from spect images for neural degeneration assessment using multimodality image fusion. Multidimensional Systems and Signal Processing, 23(4), 437–449.

    Article  MATH  MathSciNet  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Lassouaoui, N., Hamami, L., & Zerguerras, A. (2003). Segmentation and classification of biological cell images by a multifractal approach. International Journal of Intelligent Systems, 18(6), 657–678.

    Article  Google Scholar 

  • Li, B., Meng, M.-H., & Yan, H. (2009). Image denosing by curvature strength diffusion. In International conference on information and automation, 2009 (ICIA’09) (pp. 562–565), IEEE.

  • Lien, C., Huang, C., Chen, P., & Lin, Y. (2013). An efficient denoising architecture for removal of impulse noise in images. IEEE Transactions on Computer, 62(4), 631–643.

    Article  MathSciNet  Google Scholar 

  • Mertens, K., Verbeke, L., Ducheyne, E., & De Wulf, R. (2003). Using genetic algorithms in sub-pixel mapping. International Journal of Remote Sensing, 24(21), 4241–4247.

    Article  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  • Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation 1. Annual Review of Biomedical Engineering, 2(1), 315–337.

    Article  Google Scholar 

  • Qian, Y., d’Humières, D., & Lallemand, P. (1992). Lattice bgk models for Navier–Stokes equation. Europhysics Letters (EPL), 17(6), 479–484.

    Article  MATH  Google Scholar 

  • Qin, C., Cao, F., & Zhang, X. (2011). Efficient image inpainting using adaptive edge-preserving propagation. The Imaging Science Journal, 59(4), 211–218.

    Article  Google Scholar 

  • Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1), 259–268.

    Article  MATH  Google Scholar 

  • Shen, J., & Chan, T. F. (2002). Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics, 62(3), 1019–1043.

    Article  MATH  MathSciNet  Google Scholar 

  • Shih, T. K., Chang, R.-C., Lu, L.-C., Ko, W.-C., & Wang, C.-C. (2004). Adaptive digital image inpainting. In 18th International conference on advanced information Networking and Applications, 2004. AINA 2004 (vol. 1, pp. 71–76), IEEE.

  • Tang, F., Ying, Y., Wang, J., & Peng, Q. (2005). A novel texture synthesis based algorithm for object removal in photographs. In Advances in computer science-ASIAN 2004. Higher-level decision making (pp. 248–258). Berlin: Springer.

  • Thangaswamy, S. S., Kadarkarai, R., & Thangaswamy, S. R. R. (2013). Developing an efficient technique for satellite image denoising and resolution enhancement for improving classification accuracy. Journal of Electronic Imaging, 22(1), 013013-1–013013-7.

    Google Scholar 

  • Tsutahara, M. (2012). The finite-difference lattice Boltzmann method and its application in computational aero-acoustics. Fluid Dynamics Research, 44(4), 1–18.

    Article  MathSciNet  Google Scholar 

  • Verma, O. P., Hanmandlu, M., Sultania, A. K., & Parihar, A. S. (2013). A novel fuzzy system for edge detection in noisy image using bacterial foraging. Multidimensional Systems and Signal Processing, 24(1), 181–198.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, Z., Yan, Z., & Chen, G. (2011). Lattice Boltzmann method of active contour for image segmentation. In 2011 Sixth international conference on image and graphics (ICIG), (pp. 338–343), IEEE.

  • Wang, Z., Yan, Z., Qian, Y., & Chen, G. (2010). Lattice Boltzmann model of anisotropic diffusion for image denoising. In 2010 IEEE youth conference on information computing and telecommunications (YC-ICT) (pp. 21–24), IEEE.

  • Weickert, J. (1998). Anisotropic diffusion in image processing (vol. 1). Teubner Stuttgart.

  • Wu, Q., Chen, Y., & Teng, G. (2012). Lattice Boltzmann anisotropic diffusion model based image segmentation. In Computer, informatics, cybernetics and applications (pp. 577–585). Berlin: Springer.

  • Yu, H., Girimaji, S. S., & Luo, L.-S. (2005). Dns and les of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method. Journal of Computational Physics, 209(2), 599–616.

    Article  MATH  Google Scholar 

  • Zhang, W., & Shi, B. (2012). Application of lattice Boltzmann method to image filtering. Journal of Mathematical Imaging and Vision, 43(2), 135–142.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao, Y. (2008). Lattice Boltzmann based pde solver on the gpu. The Visual Computer, 24(5), 323–333.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all colleagues who are involved into this study. Specially, we would like to thank Dr. Yu Chen, Dr. Zhiqiang Wang, M. S. Rui Zhang and M. S. Wei Liu. This work is supported by National Natural Science Foundation of China (Grant No. 61171146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuangzhi Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Sun, Y., Jiang, J. et al. Novel explanation, modeling and realization of Lattice Boltzmann methods for image processing. Multidim Syst Sign Process 26, 645–663 (2015). https://doi.org/10.1007/s11045-013-0264-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0264-1

Keywords

Navigation