Skip to main content
Log in

Cushioning performance analysis of multilayered rubber materials with nonuniform friction coefficients of corrugated contact surface under the bipotential framework

  • Research
  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Rubber material is an excellent cushioning material in daily life and engineering applications. In this paper, the influence of rubber combination types and the corrugated surface roughness on cushioning performance are analyzed. By controlling the friction coefficients at different positions, the influence on the cushioning performance is also explored. Solving the numerical instability and energy nonconservation that are prone to occur in collisions is crucial for the accuracy of numerical simulation. The complexities of collision solution are overcome by separating nonlinear factors. The dynamics equation is derived according to the principle of virtual displacement, the geometric nonlinear problem of materials is described by the total Lagrangian formulation. Under the bipotential framework, the boundary nonlinear problem is solved based on the complete contact law. To reduce the solution cost and to improve the numerical accuracy, the prediction-correction step is used to solve the collision force. The bipotential coefficient is automatically updated with time steps, without the need for manual adjustment by users, achieving better convergence. Then, the collision force is substituted into the dynamic equation in the form of external load, which will not increase the degrees of freedom, and has better numerical robustness. In addition, the Newton–Raphson iterative method is embedded in the Tamma–Namburu scheme to solve the material nonlinearity problem and improve the numerical stability. Several numerical examples are presented to demonstrate the effectiveness of the proposed algorithm in the simulation of collision problems. Moreover, the proposed algorithm is proved to be stable and strictly satisfy the law of energy conservation/dissipation. Even for the corrugated surface structure with nonuniform friction, it can also better complete simulating the collision process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hubbard, P.M.: Collision detection for interactive graphics applications. IEEE Trans. Vis. Comput. Graph. 1(3), 218–230 (2018)

    Article  Google Scholar 

  2. Nurkertamanda, D., Frendiansyah, F., Saptadi, S., et al.: Virtual laboratory application based on virtual reality simulation as training tool of turning machine using goal-directed design method. IOP Conf. Ser., Mater. Sci. Eng. 1072(1), 012077 (2021)

    Article  Google Scholar 

  3. Zhu, X., Qian, Y., Wang, Q., et al.: Collision-aware interactive simulation using graph neural networks. Vis. Comput. Ind. Biomed. Art 5(1), 1–13 (2022)

    Article  Google Scholar 

  4. Pagaimo, J., Millan, P., Ambrósio, J.: Flexible multibody formulation using finite elements with 3 DoF per node with application in railway dynamics. Multibody Syst. Dyn. 58(1), 83–112 (2023)

    MathSciNet  MATH  Google Scholar 

  5. Shadi, A., Ahmadihosseini, A., Rabiei, M., et al.: Numerical and experimental analysis of fully coupled electromagnetic and thermal phenomena in microwave heating of rocks. Miner. Eng. 178, 107406 (2022)

    Article  Google Scholar 

  6. Wang, R., Zha, W.H.: Numerical simulation study of anti-large deformation bolt structure. J. Phys. Conf. Ser. 2185(1), 012060 (2022)

    Article  Google Scholar 

  7. Yu, S., Ren, X., Zhang, J., et al.: An improved form of smoothed particle hydrodynamics method for crack propagation simulation applied in rock mechanics. Int. J. Min. Sci. 31(3), 421–428 (2021)

    Article  Google Scholar 

  8. Wang, B., Fan, X.: Ground flutter simulation test based on reduced order modeling of aerodynamics by CFD/CSD coupling method. Int. J. Appl. Mech. 11(1), 1950008 (2019)

    Article  Google Scholar 

  9. Fromreide, M., Hansen, A.: Predicting motion patterns using optimal paths. Front. Phys. 9, 656296 (2021)

    Article  Google Scholar 

  10. Guo, Q., Yu, W., Hao, F., et al.: Modelling and analysis of adaptive cruise control system based on synchronization theory of Petri nets. Electronics 11(21), 3632 (2022)

    Article  Google Scholar 

  11. Li, G., Zuo, H., Xu, J.: Research on the influence of UAV anti-collision device on aerodynamic shape. J. Phys. Conf. Ser. 2477(1), 012096 (2023)

    Article  Google Scholar 

  12. Elkady, M., Elmarakbi, A., Crolla, D.: Simulation of a multibody occupant model during vehicle collision with different applications of vehicle control systems. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 226(3), 220–244 (2012)

    Google Scholar 

  13. Maier, S., Fehr, J.: Efficient simulation strategy to design a safer motorcycle. Multibody Syst. Dyn. (2023)

  14. Liu, J., Sun, B.S., Cao, J.N.: Structural optimization design of anti-collision sealing cylindrical rubber cushion. Appl. Mech. Mater. 201, 894–897 (2012)

    Article  Google Scholar 

  15. Haddout, A., Fahoume, M., Raidou, A., et al.: Numerical modeling of ZnSnO/CZTS based solar cells. Optoelectron. Lett. 18(5), 276–282 (2022)

    Article  Google Scholar 

  16. Dalisay, J.D.E., Liu, L., Eriten, M., et al.: Characterization of visco-hyperelastic behavior of open cell polyurethane foam through transient shear testing. Int. J. Solids Struct. 241, 111482 (2022)

    Article  Google Scholar 

  17. Alemdar, F., Ahmed, F.: Validation of an elastomeric bearing characterized with finite element hyperelastic models. European Journal of Science and Technology 27, 471–478 (2021)

    Google Scholar 

  18. Yao, S., Li, Z., Ma, W., et al.: Experimental investigation of the quasi-static and impact tests on the energy absorption characteristics of coupler rubber buffers used in railway vehicle. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 233(9), 937–950 (2019)

    Article  Google Scholar 

  19. Golovanov, A.I., Konoplev, Y.G., Sultanov, L.U., et al.: Numerical investigation of large deformations of hyperelastic solids: II. Stress-strain relationships. Proc. Inst. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 150(3), 122–132 (2008)

    MATH  Google Scholar 

  20. Kshirsagar, S., Lee, C., Natarajan, S.: \(\alpha \)-finite element method for frictionless and frictional contact including large deformation. Int. J. Comput. Methods 18(7), 2150002 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mondal, P., Arunachalam, S.: Finite element modelling of car seat with hyperelastic and viscoelastic foam material properties to assess vertical vibration in terms of acceleration. Engineering 12(3), 177–193 (2020)

    Article  Google Scholar 

  22. Zhou, R.L., Zhang, Q.F., Bi, X.Q., et al.: Dynamics characteristic research on impact strength and cushion of rubber part. J. Mech. Strength 37(3), 582–586 (2015)

    Google Scholar 

  23. Ahmed, N., Xue, P.: Determination of the size of the local region for efficient global/local modeling in a large composite structure under impact loading. Int. J. Impact Eng. 144, 103646 (2020)

    Article  Google Scholar 

  24. Chatterjee, A., Bowling, A.: Modeling three-dimensional surface-to-surface rigid contact and impact. Multibody Syst. Dyn. 46(1), 1–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hirmand, M., Vahab, M., Khoei, A.R.: An augmented Lagrangian contact formulation for frictional discontinuities with the extended finite element method. Finite Elem. Anal. Des. 107, 28–43 (2015)

    Article  Google Scholar 

  26. Bozorgmehri, B., Yu, X., Matikainen, M.K., et al.: A study of contact methods in the application of large deformation dynamics in self-contact beam. Nonlinear Dyn. 103, 581–616 (2021)

    Article  MATH  Google Scholar 

  27. Chamekh, M., Latrach, M.A., Renard, Y.: Frictional self-contact problem of elastic rods. J. King Saud Univ., Sci. 32(1), 828–835 (2020)

    Article  Google Scholar 

  28. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  29. Han, W.M., Migórski, S., Sofonea, M.: On penalty method for unilateral contact problem with non-monotone contact condition. J. Comput. Appl. Math. 356, 293–301 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, Q.P., Liu, J.Y., Qu, L.Z.: Dynamic modeling for silicone beams using higher-order ANCF beam elements and experiment investigation. Multibody Syst. Dyn. 46, 307–328 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu, C.X., Jing, D.H., Fu, C., et al.: A kind of FM-BEM penalty function method for a 3D elastic frictional contact nonlinear system. J. Math-Uk. 8, 6626647 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, San Diego (2021)

    MATH  Google Scholar 

  33. Chen, X., Cui, M.Q.: Dynamic modeling and analysis of 4UPS-UPU spatial parallel mechanism with spherical clearance joint. J. Harbin Inst. Tech. 28(3), 61–78 (2021)

    Google Scholar 

  34. Tomec, J., Jelenić, G.: Analysis of static frictionless beam-to-beam contact using mortar method. Multibody Syst. Dyn. 55(3), 293–322 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wriggers, P., Simo, J.C.: A note on tangent stiffness for fully nonlinear contact problems. Commun. Appl. Numer. Methods 1(5), 199–203 (1985)

    Article  MATH  Google Scholar 

  36. Wu, W., Yang, Y., Zheng, H., et al.: Numerical manifold computational homogenization for hydro-dynamic analysis of discontinuous heterogeneous porous media. Comput. Methods Appl. Mech. Eng. 388, 114254 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Passas, P., Natsiavas, S.: A time-stepping method for multibody systems involving frictional impacts and phases with persistent contact. Mech. Mach. Theory 169, 104591 (2022)

    Article  Google Scholar 

  38. Moës, N., Béchet, E., Tourbier, M.: Imposing Dirichlet boundary conditions in the extended finite element method. Int. J. Numer. Methods Eng. 83(7), 1641–1669 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Mourad, H.M., Dolbow, J., Harari, I.: A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces. Int. J. Numer. Methods Eng. 69(4), 772–793 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ji, H., Dolbow, J.E.: On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int. J. Numer. Methods Eng. 61(14), 2508–2535 (2004)

    Article  MATH  Google Scholar 

  41. Cui, Y., Ding, C., Li, X., et al.: Augmented Lagrangian methods for convex matrix optimization problems. J. Oper. Res. Soc. China 10(2), 305–342 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Guo, J., He, S.: Convergence of an augmented Lagrange algorithm for nonlinear optimizations with second-order cone constraints. Front. Math. China 17(1), 149–170 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhou, P., Ren, H., Masarati, P.: A relaxed coupling method for algebraically constrained mechanical systems. Multibody Syst. Dyn. 55(1–2), 57–81 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Q., Zhang, R., Zheng, X.: Comparison and analysis of two Coulomb friction models on the dynamic behavior of slider-Crank mechanism with a revolute clearance joint. Appl. Math. Mech. 39(9), 1239–1258 (2018)

    Article  MathSciNet  Google Scholar 

  45. Xu, Z.X., Wang, Q., Wang, Q.Y.: Numerical method for dynamics of multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints. Appl. Math. Mech. 38(12), 1733–1752 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yue, J., Liu, G.R., Li, M., et al.: A cell-based smoothed finite element method for multibody contact analysis using linear complementarity formulation. Int. J. Solids Struct. 141, 110–126 (2018)

    Article  Google Scholar 

  47. De Saxcé, G., Feng, Z.Q.: The bi-potential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math. Comput. Model. 28(4–8), 225–245 (1998)

    Article  MATH  Google Scholar 

  48. De Saxcé, G., Feng, Z.Q.: New inequality and functional for contact with friction: the implicit standard material approach. Mech. Struct. Mach. 19(3), 301–325 (1991)

    Article  MathSciNet  Google Scholar 

  49. Tao, L., Li, Y., Feng, Z.Q., et al.: Bi-potential method applied for dynamics problems of rigid bodies involving friction and multiple impacts. Nonlinear Dyn. 106(3), 1823–1842 (2021)

    Article  Google Scholar 

  50. Ning, P., Feng, Z.Q., Quintero, J.A.R., et al.: Uzawa algorithm to solve elastic and elastic-plastic fretting wear problems within the bi-potential framework. Comput. Mech. 62(6), 1327–1341 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hu, L.B., Cong, Y., Renaud, C., et al.: A bi-potential contact formulation of orthotropic adhesion between soft bodies. Comput. Mech. 69(4), 931–945 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  52. Chen, H., Feng, Z.Q., Tao, L., et al.: On the emergence of the second harmonic shear horizontal wave in presence of tangential prestress. J. Sound Vib. 557, 117732 (2023)

    Article  Google Scholar 

  53. Feng, Z.Q., Feng, Z.G.: FER/View: An Interactive Finite Element Post-Processor. The Word Congress on Computational Mechanics, WCCM VI in Conjunction with APCOM04. Springer, Beijing (2004)

    Google Scholar 

  54. Blatz, P.J., Ko, W.L.: Application of finite elastic theory to the deformation of rubbery materials. J. Rheol. 6(1), 223–252 (1962)

    Google Scholar 

  55. Wriggers, P.: Nonlinear Finite Element Methods. Springer, New York (2008)

    MATH  Google Scholar 

  56. Armero, F., Petőcz, E.: Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Eng. 158(3–4), 269–300 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Jean, M.: Dynamics with partially elastic shocks and dry friction: double scale method and numerical approach. In: Proceedings of the 4th Meeting on Unilateral Problems in Structural Analysis. Capri (1989)

    Google Scholar 

  58. Tamma, K.K., Namburu, R.R.: A robust self-starting explicit computational methodology for structural dynamic applications: architecture and representations. Int. J. Numer. Methods Eng. 29(7), 1441–1454 (2010)

    Article  Google Scholar 

  59. Öchsner, A., Öchsner, M.: A First Introduction to the Finite Element Analysis Program MSC MARC/MENTAT. Springer, Singapore (2018)

    Book  Google Scholar 

  60. Kuhl, D., Crisfield, M.: Energy-conserving and decaying algorithms in non-linear structural dynamics. Int. J. Numer. Methods Eng. 45(5), 569–599 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ling Tao wrote the main manuscript text, and prepared all figures. (Data curation: Lead; Formal analysis: Lead; Investigation: Lead; Methodology: Lead; Project administration: Lead; Software: Lead; Validation: Lead; Visualization: Lead; Writing – original draft: Lead; Writing – review & editing: Lead) Zhiqiang Feng provided internal visualization software and guidance on software operation and related numeical method. All authors reviewed the manuscript

Corresponding author

Correspondence to Ling Tao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, L., Feng, Z. Cushioning performance analysis of multilayered rubber materials with nonuniform friction coefficients of corrugated contact surface under the bipotential framework. Multibody Syst Dyn (2023). https://doi.org/10.1007/s11044-023-09931-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11044-023-09931-7

Keywords

Navigation