Skip to main content
Log in

Effects of Stress Distribution at the Contact Interface on Static Friction Force: Numerical Simulation and Model Experiment

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This study develops a simplified model that can simulate the dynamics of a split contact interface at the transition from static to kinetic friction. The model has a contact interface formed by multiple contacting points connected to a rigid base via a spring. From a numerical analysis of this model, the effect of the stress distribution at the contact interface on the level of static friction force was investigated. Consequently, it was found that the existence of the stop-restart motion can act to increase the macroscopic (apparent) static friction force. Thus, the numerical analysis demonstrated that the macroscopic static friction coefficient could be changed without varying the local static friction coefficient. The type of tangential loading history, i.e., the existence of stop-restart motion, is an important factor for characterizing the level of the static friction force. In other words, this implies that we can adjust the level of the macroscopic static friction coefficient without changes to the local static friction. Furthermore, the above numerical prediction was confirmed by a model experiment focusing on the sliding contact interface of an object built from separated rubber blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nakano, K.: Two dimensionless parameters controlling the occurrence of stick–slip motion in a 1-DOF system with Coulomb friction. Tribol. Lett. 24, 91–98 (2006)

    Article  Google Scholar 

  2. Nakano, K., Maegawa, S.: Safety-design criteria of sliding systems for preventing friction-induced vibration. J. Sound Vib. 324, 539–555 (2009)

    Article  Google Scholar 

  3. Nakano, K., Maegawa, S.: Stick–slip in sliding systems with tangential contact compliance. Tribol. Int. 42, 1771–1780 (2009)

    Article  Google Scholar 

  4. Maegawa, S., Nakano, K.: Mechanism of stick–slip associated with Schallamach waves. Wear 268, 924–930 (2010)

    Article  Google Scholar 

  5. Maegawa, S., Itoigawa, F., Nakamura, T.: Dynamics in sliding friction of soft adhesive elastomer: Schallamach waves as a stress-relaxation mechanism. Tribol. Int. 96, 23–30 (2015)

    Article  Google Scholar 

  6. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications, 2nd edn. Springer, Heidelberg (2000)

    Book  Google Scholar 

  7. Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)

    Article  Google Scholar 

  8. Varenberg, M., Gorb, S.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)

    Article  Google Scholar 

  9. Popov, V.L.: Contact Mechanics and Friction: Physical Principals and Applications. Springer, Heidelberg (2010)

    Book  Google Scholar 

  10. Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38, 313–323 (2010)

    Article  Google Scholar 

  11. Scheibert, J., Dysthe, D.K.: Role of friction-induced torque in stick–slip motion. Europhys. Lett. 92, 54001 (2010)

    Article  Google Scholar 

  12. David, O.B., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)

    Article  Google Scholar 

  13. Murarash, B., Itovich, Y., Varenberg, M.: Tuning elastomer friction by hexagonal surface patterning. Soft Matter 7, 5553–5557 (2011)

    Article  Google Scholar 

  14. Lorenz, B., Persson, B.N.J.: On the origin of why static or breakloose friction is larger than kinetic friction, and how to reduce it: the role of aging, elasticity and sequential interfacial slip. J. Phys. Condens. Matter 24, 225008 (2012)

    Article  Google Scholar 

  15. Brormann, K., Barel, I., Urbakh, M., Bennewitz, R.: Friction on a microstructured elastomer surface. Tribol. Lett. 50, 3–15 (2013)

    Article  Google Scholar 

  16. Otsuki, M., Matsukawa, H.: Systematic breakdown of Amonton’s law of friction for an elastic object locally obeying Amonton’s law. Sci. Rep. 3, 1586 (2013)

    Article  Google Scholar 

  17. Ozaki, S., Inanobe, C., Nakano, K.: Finite element analysis of precursors to macroscopic stick–slip motion in elastic materials: analysis of friction test as a boundary value problem. Tribol. Lett. 55, 151–163 (2014)

    Article  Google Scholar 

  18. Varenberg, M., Kligerman, Y.: Elimination of stick–slip motion in sliding of split or rough surface. Tribol. Lett. 53, 395–399 (2014)

    Article  Google Scholar 

  19. Katano, Y., Nakano, K., Otsuki, M., Matsukawa, H.: Novel friction law for the static friction force based on local precursor slipping. Sci. Rep. 4, 06324 (2015)

    Article  Google Scholar 

  20. Maegawa, S., Itoigawa, F., Nakamura, T.: A role of friction-induced torque on sliding friction of rubber materials. Tribol. Int. 93, 182–189 (2016)

    Article  Google Scholar 

  21. Huthings, I.M.: Tribology: Friction and Wear of Engineering Materials. Edward Arnold, London (1992)

    Google Scholar 

  22. Maegawa, S., Itoigawa, F., Nakamura, T.: Effect of normal load on friction coefficient for sliding contact between rough rubber surface and rigid smooth plane. Tribol. Int. 92, 335–343 (2015)

    Article  Google Scholar 

  23. Dieterich, J.H., Kilgore, B.D.: Direct observation of frictional contacts: new insights for state-dependent properties. Pure. Appl. Geophys. 143, 283–302 (1994)

    Article  Google Scholar 

  24. Bureau, L., Baumberger, T., Caroli, C.: Rheological aging and rejuvenation in solid friction contacts. Eur. Phys. J. E 8, 331–337 (2002)

    Article  Google Scholar 

  25. Lorenz, B., Krick, B.A., Rodriguez, N., Sawyer, W.G., Mangiagalli, P., Persson, B.N.J.: Static or breakloose friction for lubricated contacts: the role of surface roughness and dwetting. J. Phys. Condens. Matter 25, 445013 (2013)

    Article  Google Scholar 

  26. Chateauminois, A., Fretigny, C.: Local friction at a sliding interface between an elastomer and a rigid spherical probe. Eur. Phys. J. E 27, 221–227 (2008)

    Article  Google Scholar 

  27. Prevost, A., Scheibert, J., Debregeas, G.: Probing the micromechanics of a multi-contact interface at the onset of frictional sliding. Eur. Phys. J. E 36, 17–29 (2013)

    Article  Google Scholar 

  28. Tuononen, A.J.: Digital image correlation to analysis stick–slip behavior of tyre tread block. Tribol. Int. 69, 70–76 (2013)

    Article  Google Scholar 

  29. Maegawa, S., Suzuki, A., Nakano, K.: Optical measurements of real contact area and tangential contact stiffness in rough contact interface between an adhesive elastomer and a glass plate. J. Adv. Mech. Des. Syst. Manufact. 9, JAMDSM0069 (2015)

    Google Scholar 

  30. Kammer, D.S., Yastrebov, V.A., Spijker, P., Molinari, J.-F.: On the propagation of slip fronts at frictional interfaces. Tribol. Lett. 48, 27–32 (2012)

    Article  Google Scholar 

  31. Bar-Sinai, Y., Brener, E.A., Bouchbinder, E.: Slow rupture of frictional interfaces. Geophys. Res. Lett. 39, L03308 (2012)

    Article  Google Scholar 

  32. Bouchbinder, E., Brener, E.A., Barel, I., Urbakh, M.: Slow cracklike dynamics at the onset of frictional sliding. Phys. Rev. Lett. 107, 235501 (2011)

    Article  Google Scholar 

  33. Bar-Sinai, Y., Spatschek, R., Brener, E.A., Bouchbinder, E.: Instabilities at frictional interfaces: creep patches, nucleation, and rupture fronts. Phys. Rev. E 88, 060403 (2013)

    Article  Google Scholar 

  34. Rubinstein, S.M., Cohen, G., Fineberg, J.: Contact area measurements reveal loading-history dependence of static friction. Phys. Rev. Lett. 96, 256103 (2006)

    Article  Google Scholar 

  35. David, O.B., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211–214 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Maegawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maegawa, S., Itoigawa, F. & Nakamura, T. Effects of Stress Distribution at the Contact Interface on Static Friction Force: Numerical Simulation and Model Experiment. Tribol Lett 62, 15 (2016). https://doi.org/10.1007/s11249-016-0660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0660-4

Keywords

Navigation