Skip to main content
Log in

Autonomous unicycle: modeling, dynamics, and control

  • Research
  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This article focuses on modeling and analyzing the dynamics of an autonomous unicycle. The equations of motion of the nonholonomic multibody system are derived using the Appellian approach, which enables the use of a minimum number of state variables and results in a system of low complexity. The final equations of motion consist of 8 first-order kinematic differential equations and 6 first-order dynamic differential equations. The stability of the open-loop dynamics is investigated and a PD-type controller with 3 input torques is proposed that enables the unicycle to stabilize its upright position and travel along a straight path. The performance of the closed-loop system is demonstrated via numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code Availability

The codes used to generate the data are included in the appendix.

References

  1. Appell, P.: Sur une forme générale des équations de la dynamique (On a general form of the equations of dynamics). J. Reine Angew. Math. 121, 310–319 (1900)

    MathSciNet  MATH  Google Scholar 

  2. Baruh, H.: Analytical Dynamics. McGraw-Hill, New York (1999)

    Google Scholar 

  3. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, Berlin (2003)

    Book  Google Scholar 

  4. De Luca, A., Oriolo, G., Samson, C.: Feedback control of a nonholonomic car-like robot. In: Laumond, J.P. (ed.) Robot Motion Planning and Control, pp. 171–249. Springer, Berlin (1998)

    Chapter  Google Scholar 

  5. De Sapio, V.: Advanced Analytical Dynamics: Theory and Applications. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  6. Desloge, E.: A comparison of Kane’s equations of motion and the Gibbs–Appell equations of motion. Am. J. Phys. 54, 470–472 (1986)

    Article  Google Scholar 

  7. Desloge, E.: Relationship between Kane’s equations and the Gibbs-Appell equations. J. Guid. Control Dyn. 10, 120–1222 (1987)

    Article  Google Scholar 

  8. Desloge, E.: The Gibbs-Appell equations of motion. Am. J. Phys. 56, 841–846 (1988)

    Article  MathSciNet  Google Scholar 

  9. Gantmacher, F.: Lectures in Analytical Mechanics. MIR Publishers, Moscow (1970)

    Google Scholar 

  10. Gibbs, J.W.: On the fundamental formulae of dynamics. Am. J. Math. 2(1), 49–64 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greenwood, D.T.: Adavanced Dynamics. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  12. Halvani, O., Or, Y.: Nonholonomic dynamics of the twistcar vehicle: asymptotic analysis and hybrid dynamics of frictional skidding. Nonlinear Dyn. 107(3), 3443–3459 (2022)

    Article  Google Scholar 

  13. Hamel, G.: Nichtholonome Systeme höherer Art (Nonholonomic systems of a higher kind). Sitzungsber. Berl. Math. Ges. 37, 41–52 (1938)

    Google Scholar 

  14. Horvath, H.Z., Takács, D.: Control design for balancing a motorbike at zero longitudinal speed. In: 15th International Symposium on Advanced Vehicle Control (2022)

    Google Scholar 

  15. Isomi, Y., Majima, S.: Tracking control method for an underactuated unicycle robot using an equilibrium state. In: 2009 IEEE International Conference on Control and Automation, pp. 1844–1849 (2009)

    Chapter  Google Scholar 

  16. Kane, T.R.: Dynamics of nonholonomic systems. J. Appl. Mech. 28, 574–578 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kane, T.: Rebuttal to “A comparison of Kane’s equations of motion and the Gibbs–Appell equations of motion”. Am. J. Phys. 54, 472 (1986)

    Article  Google Scholar 

  18. Kane, T.R., Levinson, D.A.: Dynamics, Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  19. Koon, W.S., Marsden, J.E.: The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems. Rep. Math. Phys. 40(1), 21–62 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meijaard, J.P., Papadopoulos, J.M., Ruina, A., et al.: Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proc. R. Soc. A 463(2084), 1955–1982 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Naveh, Y., Bar Yoseph, P., Halevi, Y.: Nonlinear modeling and control of a unicycle. Dyn. Control 9, 279–296 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. Am. Math. Soc., Providence (1972)

    MATH  Google Scholar 

  23. Niełaczny, M., Wiesław, B., Kapitaniak, T.: Dynamics of the Unicycle Modelling and Experimental Verification. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  24. Ostrovskaya, S., Angeles, J.: Nonholonomic systems revisited within the framework of analytical mechanics. Appl. Mech. Rev. 57(7), 415–433 (1998)

    Article  Google Scholar 

  25. Papastavridis, J.G.: Analytical Mechanics. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  26. Pollard, B., Fedonyuk, V., Tallapragada, P.: Swimming on limit cycles with nonholonomic constraints. Nonlinear Dyn. 97(4), 2453–2468 (2019)

    Article  MATH  Google Scholar 

  27. Qin, W.B., Zhang, Y., Takács, D., et al.: Nonholonomic dynamics and control of road vehicles: moving toward automation. Nonlinear Dyn. 110(3), 1959–2004 (2022)

    Article  Google Scholar 

  28. Rodwell, C., Tallapragada, P.: Induced and tunable multistability due to nonholonomic constraints. Nonlinear Dyn. 108(3), 2115–2126 (2022)

    Article  Google Scholar 

  29. Routh, E.J.: The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies. Macmillan & Co., London (1884)

    Google Scholar 

  30. Ruan, X., Hu, J., Wang, Q.: Modeling with Euler-Lagrange equation and cybernetical analysis for a unicycle robot. In: 2nd International Conference on Intelligent Computation Technology and Automation, pp. 108–111 (2009)

    Google Scholar 

  31. Schoonwinkel, A.: Design and test of a computer stabilized unicycle. PhD thesis, Stanford University (1987)

  32. Sheng, Z., Yamafuji, K.: Study on the stability and motion control of a unicycle: part I: dynamics of a human riding a unicycle and its modeling by link mechanisms. JSME Int. J. Ser. C 38(2), 249–259 (1995)

    Google Scholar 

  33. Suzuki, H., Moromugi, S., Okura, T.: Development of robotic unicycles. J. Robot. Mechatron. 26(5), 540–549 (2014)

    Article  Google Scholar 

  34. Tallapragada, P., Kelly, S.D.: Integrability of velocity constraints modeling vortex shedding in ideal fluids. J. Comput. Nonlinear Dyn. 021, 008 (2017)

    Google Scholar 

  35. Teschl, G.: Ordinary Differential Equations and Dynamical System. Am. Math. Soc., Providence (2012)

    Book  MATH  Google Scholar 

  36. Várszegi, B., Takács, D., Orosz, G.: On the nonlinear dynamics of automated vehicles – a nonholonomic approach. Eur. J. Mech. A, Solids 74, 371–380 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Voronets, P.V.: Об уравнениях движения для неголономных систем (On the equations of motion of nonholonomic systems). Мат. Сб. 22(4), 659–686 (1901)

    Google Scholar 

  38. Vos, D., Von Flotow, A.: Dynamics and nonlinear adaptive control of an autonomous unicycle: theory and experiment. In: 29th IEEE Conference on Decision and Control, pp. 182–187 (1990)

    Chapter  Google Scholar 

  39. Voss, A.: Ueber die Differentialgleichungen der Mechanik (About the differential equations of mechanics). Math. Ann. 25, 258–286 (1885)

    Article  MathSciNet  Google Scholar 

  40. Yona, T., Or, Y.: The wheeled three-link snake model: singularities in nonholonomic constraints and stick-slip hybrid dynamics induced by Coulomb friction. Nonlinear Dyn. 95(3), 2307–2324 (2019)

    Article  MATH  Google Scholar 

  41. Zenkov, D., Bloch, A., Marsden, J.: The Lyapunov-Malkin theorem and stabilization of the unicycle with rider. Syst. Control Lett. 45, 293–300 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Dénes Takács acknowledges the support of the Rosztoczy Foundation during 2020–2021. Dang Cong Bui acknowledges the support of the Vingroup Science and Technology Scholarship Program during 2021–2022. Gábor Orosz acknowledges the support of Hungarian Academy of Sciences within the Distinguished Guest Fellowship Programme during 2022.

Author information

Authors and Affiliations

Authors

Contributions

X. C. and D. C. B. carried out the analytical calculations as well as the numerical simulations. They contributed equally to this work. D. T. created some of the illustrations. D. T. and G. O. supervised the research and all authors participated in the writing of the manuscript.

Corresponding author

Correspondence to Gábor Orosz.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Detailed expressions of accelerations

The components of the acceleration of the center of mass B and the angular acceleration of the body in (32) are

$$ \begin{aligned} a_{{\mathrm{B}}x}= & \dot{\sigma}_{2} R \cos \gamma + \dot{\sigma}_{4} h + \sigma _{1}^{2} \big( R \sin \gamma + h \cos \gamma \sin \gamma \big) - \sigma _{3}^{2} h \cos \gamma \sin \gamma \\ & + \sigma _{1} \sigma _{3} \Big( R \cos \gamma + h \big( \cos ^{2} \gamma - \sin ^{2}\gamma \big) \Big) + \sigma _{2} \sigma _{3} R \tan \theta \sin \gamma \,, \\ a_{{\mathrm{B}}y}= & - \dot{\sigma}_{1} (R + h \cos \gamma ) + \dot{\sigma}_{3} h \sin \gamma - \sigma _{3}^{2} h \tan \theta \cos \gamma \\ &- \sigma _{1} \sigma _{3} h \tan \theta \sin \gamma + \sigma _{2} \sigma _{3} R + 2 \sigma _{1} \sigma _{4} h \sin \gamma + 2 \sigma _{3} \sigma _{4} h \cos \gamma \,, \\ a_{{\mathrm{B}}z}= & \dot{\sigma}_{2} R \sin \gamma - \sigma _{1}^{2} \big( R \cos \gamma + h \cos ^{2}\gamma \big) - \sigma _{3}^{2} h \sin ^{2}\gamma - \sigma _{4}^{2} h \\ &+ \sigma _{1} \sigma _{3} \big( R \sin \gamma + 2 h \cos \gamma \sin \gamma \big) - \sigma _{2} \sigma _{3} R \tan \theta \cos \gamma \, \end{aligned} $$
(A1)

and

$$ \begin{aligned} \alpha _{x}= &\dot{\sigma}_{1} \cos \gamma -\dot{\sigma}_{3} \sin \gamma +\sigma _{3} ^{2} \tan \theta \cos \gamma \\ &+ \sigma _{1} \sigma _{3} \tan \theta \sin \gamma - \sigma _{1} \sigma _{4} \sin \gamma - \sigma _{3} \sigma _{4} \cos \gamma \,, \\ \alpha _{y}=& \dot{\sigma}_{4}\,, \\ \alpha _{z}= &\dot{\sigma}_{1} \sin \gamma + \dot{\sigma}_{3} \cos \gamma +\sigma _{3} ^{2} \tan \theta \sin \gamma \\ &- \sigma _{1} \sigma _{3} \tan \theta \cos \gamma + \sigma _{1} \sigma _{4} \cos \gamma - \sigma _{3} \sigma _{4} \sin \gamma \,. \end{aligned} $$
(A2)

The components of the angular accelerations of the flywheels in (36) are

$$ \begin{aligned} \alpha _{{\mathrm{b}}x} = & \dot{\sigma}_{5}\,, \\ \alpha _{{\mathrm{b}}y} = & \dot{\sigma}_{4} - \sigma _{1}^{2} \cos \gamma \sin \gamma + \sigma _{3}^{2} \cos \gamma \sin \gamma \\ & - \sigma _{1} \sigma _{3} \big(\cos ^{2}\gamma -\sin ^{2}\gamma \big) + \sigma _{1} \sigma _{5} \sin \gamma + \sigma _{3} \sigma _{5} \cos \gamma \,, \\ \alpha _{{\mathrm{b}}z}= & \dot{\sigma}_{1} \sin \gamma + \dot{\sigma}_{3} \cos \gamma + \sigma _{3}^{2} \tan \theta \sin \gamma \\ &- \sigma _{1} \sigma _{3} \tan \theta \cos \gamma + 2 \sigma _{1} \sigma _{4} \cos \gamma - 2 \sigma _{3} \sigma _{4} \sin \gamma - \sigma _{4} \sigma _{5} \, \end{aligned} $$
(A3)

and

$$ \begin{aligned} \alpha _{{\mathrm{s}}x}= & \dot{\sigma}_{1} \cos \gamma - \dot{\sigma}_{3} \sin \gamma + \sigma _{3}^{2} \tan \theta \cos \gamma \\ & + \sigma _{1} \sigma _{3} \tan \theta \sin \gamma - 2 \sigma _{1} \sigma _{4} \sin \gamma - 2 \sigma _{3} \sigma _{4} \cos \gamma + \sigma _{4} \sigma _{6} \,, \\ \alpha _{{\mathrm{s}}y}= & \dot{\sigma}_{4} + \sigma _{1}^{2} \cos \gamma \sin \gamma - \sigma _{3}^{2} \cos \gamma \sin \gamma \\ &+ \sigma _{1} \sigma _{3} \big( \cos ^{2}\gamma - \sin ^{2}\gamma \big) - \sigma _{1} \sigma _{6} \cos \gamma + \sigma _{3} \sigma _{6} \sin \gamma \,, \\ \alpha _{{\mathrm{s}}z}=&{\dot{\sigma} }_{6}\,. \end{aligned} $$
(A4)

Appendix B: Elements of matrices in the linearized systems

The components of matrix \(A\) in (61) are:

$$ \begin{aligned} A_{13}&= \frac{2\big( 3 m_{\mathrm{w}} R + 2 \widehat{m} (R+h) \big)v^{*}}{Q_{1}}, \quad A_{14}=- \frac{2 m_{\mathrm{s}} r_{\mathrm{s}}^{2} \omega _{\mathrm{s}}^{*}}{Q_{1}}, \\ A_{17}&=\frac{4\big( m_{\mathrm{w}} R + \widehat{m} (R+h) \big)g}{Q_{1}}, \\ A_{21}&=- \frac{4 \widehat{m} m_{\mathrm{s}} h r_{\mathrm{s}}^{2} \omega _{\mathrm{s}}^{*}}{R Q_{2}}, \quad A_{23}= \frac{4 \widehat{m} m_{\mathrm{b}} h r_{\mathrm{b}}^{2} \omega _{\mathrm{b}}^{*}}{R Q_{2}}, \quad A_{28} = - \frac{8 \widehat{m}^{2} h^{2} g}{R Q_{2}}, \\ A_{31} &= - \frac{2 m_{\mathrm{w}} R v^{*} }{Q_{3}}, \qquad \,\,\, A_{34}= \frac{2 m_{\mathrm{b}} r_{\mathrm{b}}^{2} \omega _{\mathrm{b}}^{*} }{Q_{3}}, \\ A_{41} &= \frac{2 \big(3 m_{\mathrm{w}} + 2 \widehat{m} \big) m_{\mathrm{s}} r_{\mathrm{s}}^{2} \omega _{\mathrm{s}}^{*}}{Q_{2}}, \quad A_{43} = - \frac{2 \big(3 m_{\mathrm{w}} + 2 \widehat{m} \big) m_{\mathrm{b}} r_{\mathrm{b}}^{2} \omega _{\mathrm{b}}^{*}}{Q_{2}} \\ A_{48}&= \frac{4 \big(3 m_{\mathrm{w}} + 2 \widehat{m} \big) \widehat{m} h g}{Q_{2}}, \end{aligned} $$
(B1)

the components of matrix \(B\) in (61) are:

$$ \begin{aligned} B_{12}&=-\frac{4}{Q_{1}}, \quad B_{21}= \frac{ 2 \big( 4 \widehat{m} (R+h) h + m_{\mathrm{b}} r_{\mathrm{b}}^{2} + m_{\mathrm{s}} r_{\mathrm{s}}^{2} + 4J_{y} \big)}{R^{2} Q_{2}}, \\ B_{33}&=-\frac{4}{Q_{3}}, \quad B_{41}=- \frac{4 \big(3 m_{\mathrm{w}} R + 2 \widehat{m} (R+h) \big)}{R Q_{2}}, \end{aligned} $$
(B2)

the components of matrix \(\bar{A}\) in (70) are:

$$\begin{aligned} \bar{A}_{11}&=-\frac{4 d_{\mathrm{b}} }{Q_{1}}, \quad \bar{A}_{17}= \frac{4\big( m_{\mathrm{w}} R + \widehat{m} (R+h) \big) g - 4 p_{\mathrm{b}} }{Q_{1}}, \\ \bar{A}_{24}&= \frac{ 2 \big( 4 \widehat{m} (R+h) h + m_{\mathrm{b}} r_{\mathrm{b}}^{2} + m_{\mathrm{s}} r_{\mathrm{s}}^{2} + 4J_{y} \big) d_{\mathrm{w}}}{R^{2} Q_{2}}, \\ \begin{aligned} \bar{A}_{28}&=- \frac{8 \widehat{m}^{2} R h^{2} g - 2 \big( 4 \widehat{m} (R+h) h + m_{\mathrm{b}} r_{\mathrm{b}}^{2} + m_{\mathrm{s}} r_{\mathrm{s}}^{2} + 4J_{y} \big) p_{\mathrm{w}}}{R^{2} Q_{2}}, \\ \bar{A}_{33}&=-\frac{4 d_{\mathrm{s}} }{Q_{3}}, \quad \bar{A}_{39}=- \frac{4 p_{\mathrm{s}} }{Q_{3}}, \end{aligned} \\ \bar{A}_{44}&=- \frac{4 \big(3 m_{\mathrm{w}} R + 2 \widehat{m} (R+h) \big) d_{\mathrm{w}}}{R Q_{2}}, \\ \bar{A}_{48}&= \frac{4 \widehat{m} \big(3 m_{\mathrm{w}} + 2 \widehat{m} \big) R h g - 4 \big( 3 m_{\mathrm{w}} R + 2 \widehat{m} (R+h) \big) p_{\mathrm{w}}}{R Q_{2}}, \end{aligned}$$
(B3)

where

$$ \begin{aligned} \widehat{m} = & m + m_{\mathrm{b}} + m_{\mathrm{s}} , \\ Q_{1} = & 5 m_{\mathrm{w}} R^{2} + 4 \widehat{m} (R+h)^{2} + m_{\mathrm{s}} r_{ \mathrm{s}}^{2} + 4 J_{x} , \\ Q_{2} = & \big( 3 m_{\mathrm{w}} + 2 \widehat{m} \big) \big( m_{\mathrm{b}} r_{ \mathrm{b}}^{2} + m_{\mathrm{s}} r_{\mathrm{s}}^{2} + 4 J_{y} \big) + 12 \widehat{m} m_{ \mathrm{w}} h^{2} , \\ Q_{3} = & m_{\mathrm{w}} R^{2} + m_{\mathrm{b}} r_{\mathrm{b}}^{2} + 4 J_{z} . \end{aligned} $$
(B4)

The polynomial in (71) is:

$$\begin{aligned} p(\lambda ) ={}& \lambda ^{6} - ( \bar{A}_{11} + \bar{A}_{33} + \bar{A}_{44} )\lambda ^{5} + (\bar{A}_{11} \bar{A}_{33} + \bar{A}_{11} \bar{A}_{44} - A_{13} A_{31} - A_{14} A_{41} \\ &{} + \bar{A}_{33} \bar{A}_{44} - A_{34} A_{43} - \bar{A}_{17} - \bar{A}_{39} - \bar{A}_{48}) \lambda ^{4} \\ &{}+ (-\bar{A}_{11} \bar{A}_{33} \bar{A}_{44} + \bar{A}_{11} A_{34} A_{43} + A_{13} A_{31} \bar{A}_{44}- A_{13} A_{34} A_{41} \\ &{}- A_{14} A_{31} A_{43} + A_{14} \bar{A}_{33} A_{41} + \bar{A}_{11} \bar{A}_{39} + \bar{A}_{11} \bar{A}_{48} + \bar{A}_{17} \bar{A}_{33} \\ &{}+ \bar{A}_{17} \bar{A}_{44} + \bar{A}_{33} \bar{A}_{48} + \bar{A}_{39} \bar{A}_{44})\lambda ^{3} + (-\bar{A}_{11} \bar{A}_{33} \bar{A}_{48} - \bar{A}_{11} \bar{A}_{39} \bar{A}_{44} + A_{13} A_{31} \bar{A}_{48} \\ &{}+ A_{14} \bar{A}_{39} A_{41} - \bar{A}_{17} \bar{A}_{33} \bar{A}_{44} + \bar{A}_{17} A_{34} A_{43} + \bar{A}_{17} \bar{A}_{39} + \bar{A}_{17} \bar{A}_{48} + \bar{A}_{39} \bar{A}_{48})\lambda ^{2} \\ &{}- (\bar{A}_{11} \bar{A}_{39} \bar{A}_{48} + \bar{A}_{17} \bar{A}_{33} \bar{A}_{48} + \bar{A}_{17} \bar{A}_{39} \bar{A}_{44})\lambda - \bar{A}_{17} \bar{A}_{39} \bar{A}_{48}\,. \end{aligned}$$
(B5)

Appendix C: Eigenvectors of the open-loop system

When \({\omega _{\mathrm{b}}^{*}=\omega _{\mathrm{s}}^{*}=0}\), the eigenvectors corresponding to the nonzero eigenvalues (63) are

$$ v_{1,2} = \begin{bmatrix} 0 \\ \pm \sqrt{A_{48}} \\ 0 \\ \frac{\pm (\sqrt{A_{48}})^{3}}{A_{28}} \\ 0 \\ 0 \\ 0 \\ \frac{A_{48}}{A_{28}} \\ 0 \\ R \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \,, \quad v_{3,4} = \begin{bmatrix} -\frac{A_{13} A_{31} + A_{17}}{A_{31}} \\ 0 \\ \mp \sqrt{A_{13} A_{31} + A_{17}} \\ 0 \\ 0 \\ 0 \\ \frac{\mp \sqrt{A_{13} A_{31} + A_{17}}}{A_{31}} \\ 0 \\ -1 \\ 0 \\ \pm \big(\frac{R\sqrt{A_{13} A_{31} + A_{17}}}{A_{31}} - \frac{v^{*}}{\sqrt{A_{13} A_{31} + A_{17}}} \big) \\ 0 \\ \frac{\pm \sqrt{A_{13} A_{31} + A_{17}}}{A_{31}} \\ 1 \end{bmatrix} \,, $$
(C1)

where \(A_{ij}, B_{ij}\) are defined in Appendix B.

Appendix D: Transfer functions for the open-loop system

When \({\omega _{\mathrm{b}}^{*}=\omega _{\mathrm{s}}^{*}=0}\), the transfer function from input torques \(M_{\mathrm{w}}\), \(M_{\mathrm{b}}\), and \(M_{\mathrm{s}}\) to angles \(\gamma \), \(\theta \), and \(\psi \) are:

$$ \begin{aligned} T_{M_{\mathrm{w}} \rightarrow \gamma}(\lambda ) &= \frac{B_{41}}{\lambda ^{2}-A_{48}}\, , \\ T_{M_{\mathrm{b}} \rightarrow \theta}(\lambda ) &= \frac{B_{12}}{\lambda ^{2}-(A_{13} A_{31} + A_{17})}\, , \\ T_{M_{\mathrm{s}} \rightarrow \psi}(\lambda ) &= \frac{B_{33}(\lambda ^{2}-A_{17})}{\lambda ^{2}\big(\lambda ^{2}-(A_{13} A_{31} + A_{17})\big)} \, , \\ T_{M_{\mathrm{b}} \rightarrow \psi}(\lambda ) &= \frac{A_{31}B_{12}}{\lambda \big(\lambda ^{2}-(A_{13} A_{31} + A_{17})\big)} \, , \\ T_{M_{\mathrm{s}} \rightarrow \theta}(\lambda ) &= \frac{A_{13}B_{33}}{\lambda \big(\lambda ^{2}-(A_{13} A_{31} + A_{17})\big)} \, , \\ T_{M_{\mathrm{w}} \rightarrow \theta}(\lambda ) &= T_{M_{\mathrm{b}} \rightarrow \gamma}(\lambda ) = T_{M_{\mathrm{s}} \rightarrow \gamma}( \lambda ) = T_{M_{\mathrm{w}} \rightarrow \psi}(\lambda ) = 0\, , \end{aligned} $$
(D1)

where \(A_{ij}, B_{ij}\) can be found in Appendix B.

Appendix E: MATLAB code for the EoM derivation

figure i
figure j
figure k
figure l

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Bui, D.C., Takács, D. et al. Autonomous unicycle: modeling, dynamics, and control. Multibody Syst Dyn (2023). https://doi.org/10.1007/s11044-023-09923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11044-023-09923-7

Keywords

Navigation