Skip to main content
Log in

Modeling of a hexapod piezo-actuated positioning platform

  • Research
  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel modeling methodology of a hexapod piezo-actuated positioning platform, which is driven by six parallel-kinematic preloaded piezo actuators. A composite electro-mechanical model, which can describe the dynamic characteristics of the power amplifier, the inverse piezoelectric effect, and the dynamics of the hexapod mechanism, is presented. The effectiveness of the proposed electro-mechanical model is demonstrated experimentally. The experimental results show that the proposed model can accurately portray the hysteresis and dynamics characteristics of the hexapod piezo-actuated positioning platform. The proposed modeling methodology can decouple the 6-DOF coupled platform, which gives a broad range of possibilities for model-based controller design on coupled piezo-actuated positioning platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author

References

  1. Perez-Diaz, J.L., Valiente-Blanco, I., Diez-Jimenez, E., Sanchez-Garcia-Casarrubios, J.: Superconducting noncontact device for precision positioning in cryogenic environments. IEEE/ASME Trans. Mechatron. 19(2), 598–605 (2014)

    Article  Google Scholar 

  2. Wang, F., Li, J., Liu, S., Zhao, X., Zhang, D., Tian, Y.: An improved adaptive genetic algorithm for image segmentation and vision alignment used in microelectronic bonding. IEEE/ASME Trans. Mechatron. 19(3), 916–923 (2014)

    Article  Google Scholar 

  3. Zhou, S., Sun, J., Chen, W., et al.: Method of designing a six-axis force sensor for stiffness decoupling based on Stewart platform. Measurement 148, 106966 (2019)

    Article  Google Scholar 

  4. Tang, H., Li, Y.M.: Feedforward nonlinear PID control of a novel micromanipulator using Preisach hysteresis compensator. Robot. Comput.-Integr. Manuf. 34, 124–132 (2015)

    Article  Google Scholar 

  5. Yoon, J.Y., Trumper, D.L.: Friction modeling, identification, and compensation based on friction hysteresis and Dahl resonance. Mechatronics 24, 734–741 (2014)

    Article  Google Scholar 

  6. Xie, W.F., Fu, J., Yao, H., Su, C.Y.: Observer based control of piezoelectric actuators with classical Duhem modeled hysteresis. In: American Control Conference, pp. 4221–4226 (2009)

    Google Scholar 

  7. Chen, X.K., Hisayama, T.: Adaptive sliding-mode position control for piezo-actuated. IEEE Trans. Ind. Electron. 55(11), 3927–3934 (2008)

    Article  Google Scholar 

  8. Liaw, H.C., Shirinzadeh, B., Smith, J.: Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation. IEEE Trans. Neural Netw. 20, 356–367 (2009)

    Article  Google Scholar 

  9. Goldfarb, M., Celanovic, N.: Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst. 17, 69–79 (1997)

    Article  MATH  Google Scholar 

  10. Juhász, L., Maas, J., Borovac, B.: Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators. Mechatronics 21, 329–338 (2011)

    Article  Google Scholar 

  11. Zhu, W., Rui, X.T.: Modeling of a three degrees of freedom piezo-actuated mechanism. Smart Mater. Struct. 26, 015006 (13 pp.) (2017)

    Article  MathSciNet  Google Scholar 

  12. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc–Wen model, a survey. Arch. Comput. Methods Eng. 16, 161–188 (2009)

    Article  MATH  Google Scholar 

  13. Shao, Z.F., Tang, X., Wang, L.P., Chen, X.: Dynamic modeling and wind vibration control of the feed support system in FAST. Nonlinear Dyn. 67, 965–985 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Staicu, S.: Dynamics of the 6-6 Stewart parallel manipulator. Robot. Comput.-Integr. Manuf. 27, 212–220 (2011)

    Article  Google Scholar 

  15. Asadi, F., Sadati, S.H.: Full dynamic modeling of the general stewart platform manipulator via Kane’s method. Iran. J. Sci. Technol. Trans. Mech. Eng. 42, 161–168 (2018)

    Article  Google Scholar 

  16. Han, X., Li, C., Ma, X.G.: A rigidity and flexibility coupling dynamic analysis method applied in the 6-6 Stewart parallel mechanism. Adv. Mater. Res., Trans. Tech. Publ. 694(7), 65–68 (2013)

    Google Scholar 

  17. Rui, X., Wang, G., Lu, Y., et al.: Transfer matrix method for linear multibody system. Multibody Syst. Dyn. 19, 179–207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rui, X., Wang, X., Zhou, Q., et al.: Transfer matrix method for multibody systems (Rui method) and its applications. Sci. China 62, 712–720 (2019)

    Article  Google Scholar 

  19. Zhu, W., Rui, X.T.: Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc–Wen model. Precis. Eng. 43, 299–307 (2016)

    Article  Google Scholar 

  20. Zhu, W., Wang, D.H.: Non-symmetrical Bouc–Wen model and corresponding parameter identification method for a piezoelectric ceramic actuator. Sens. Actuators A, Phys. 181, 51–60 (2012)

    Article  Google Scholar 

  21. Rui, X.T., Zhang, J.S., Wang, X., Rong, B., He, B., Jin, Z.: Multibody system transfer matrix method: the past, the present, and the future. Int. J. Mech. Syst. Dyn. 2, 3–26 (2022)

    Article  Google Scholar 

  22. Jiang, M., Rui, X.T., Zhu, W., Yang, F.F., Zhang, J.S.: Modeling and control of magnetorheological 6-DOF Stewart platform based on multibody systems transfer matrix method. Smart Mater. Struct. 29, 035029 (20 pp.) (2020)

    Article  Google Scholar 

Download references

Funding

The authors wish to acknowledge the financial support by National Natural Science Foundation of China (Grant No. 51975298), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181301), and Fundamental Research Funds for the Central Universities (Grant No. 30921011105).

Author information

Authors and Affiliations

Authors

Contributions

Prof. Zhu and Dr. Jiang wrote the main manuscript text and Prof. Yang and Prof. Rui prepared equations (5)–(31). All authors reviewed the manuscript.

Corresponding author

Correspondence to Wei Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Jiang, M., Yang, F. et al. Modeling of a hexapod piezo-actuated positioning platform. Multibody Syst Dyn (2023). https://doi.org/10.1007/s11044-023-09917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11044-023-09917-5

Keywords

Navigation