Skip to main content
Log in

Improving the robustness of non-Hertzian wheel–rail contact model for railway vehicle dynamics simulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Computational robustness is a fundamental requirement for wheel–rail dynamic interaction simulations. To improve the computational robustness of a wheel–rail non-Hertzian contact model (NHM) for cases with sudden changes in the wheel–rail initial contact point and lateral extreme of the contact area, in this paper, we develop a robust wheel–rail non-Hertzian contact model (RNHM) by improving the original MKP+FASTSIM model. Four improved strategies are applied in the RNHM: improving the wheel–rail contact angle, the wheel–rail rigid slip, the virtual penetration region reduction factor, and the ellipse-equivalent method for the nonelliptical contact area. The computational accuracy and robustness of the RNHM are validated by taking the robust Kalker variational method (RKVM) and other NHMs without model improvements as references, and the contact behavior between a worn wheel and a standard rail is used to verify the model. The simulation results indicate that the RNHM exhibits good computational accuracy and robustness in both the wheel–rail static contact analysis and the wheel–rail dynamic contact analysis and that all four improvement strategies are effective and necessary for increasing the computational robustness of the NHM. The improvement of the wheel–rail contact angle and the wheel–rail rigid slip significantly improve the calculation robustness of wheel–rail lateral force and wheel–rail longitudinal force, respectively; the improvement of the virtual penetration region reduction factor and the ellipse-equivalent method improves the calculation robustness of both the wheel–rail lateral force and the wheel–rail longitudinal force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Polach, O., Berg, M., Iwnicki, S.: Simulation of railway vehicle dynamics. In: Iwnicki, S., Spiryagin, M., Cole, C., McSweeney, T. (eds.) Handbook of Railway Vehicle Dynamics, pp. 651–722. CRC Press, Boca Raton (2020)

    Google Scholar 

  2. Ye, Y., Zhu, B., Huang, P., Peng, B.: OORNet: a deep learning model for on-board condition monitoring and fault diagnosis of out-of-round wheels of high-speed trains. Measurement 199, 111268 (2022)

    Article  Google Scholar 

  3. Enblom, R.: Deterioration mechanisms in the wheel–rail interface with focus on wear prediction: a literature review. Veh. Syst. Dyn. 47(6), 661–700 (2009)

    Article  Google Scholar 

  4. Shabana, A., Zaazaa, K., Escalona, J., et al.: Development of elastic force model for wheel/rail contact problems. J. Sound Vib. 269(1–2), 295–325 (2004)

    Article  Google Scholar 

  5. Zhai, W.: Vehicle–Track Coupled Dynamics Theory and Applications. Springer, Singapore (2019)

    Google Scholar 

  6. Marques, F., Magalhães, H., Pombo, J., Ambrósio, J., Flores, P.: A three-dimensional approach for contact detection between realistic wheel and rail surfaces for improved railway dynamic analysis. Mech. Mach. Theory 149, 103825 (2020)

    Article  Google Scholar 

  7. Aceituno, J.F., Urda, P., Briales, E., Escalona, J.L.: Analysis of the two-point wheel-rail contact scenario using the knife-edge-equivalent contact constraint method. Mech. Mach. Theory 148, 103803 (2020)

    Article  Google Scholar 

  8. Meymand, S., Keylin, A., Ahmadian, M.: A survey of wheel–rail contact models for rail vehicles. Veh. Syst. Dyn. 54(3), 386–428 (2016)

    Article  Google Scholar 

  9. Sun, Y., Ling, L.: An optimal tangential contact model for wheel-rail non-Hertzian contact analysis and its application in railway vehicle dynamics simulation. Veh. Syst. Dyn. 60(9), 3240–3268 (2022)

    Article  Google Scholar 

  10. Ayasse, J., Chollet, H., Sebès, M.: Wheel-rail contact mechanics. In: Iwnicki, S., Spiryagin, M., Cole, C., McSweeney, T. (eds.) Handbook of Railway Vehicle Dynamics, pp. 242–278. CRC Press, Boca Raton (2020)

    Google Scholar 

  11. Kalker, J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic, Dordrecht (1990)

    Book  MATH  Google Scholar 

  12. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  13. Kalker, J.: A fast algorithm for the simplified theory of rolling contact. Veh. Syst. Dyn. 11(1), 1–13 (1982)

    Article  Google Scholar 

  14. Sichani, M., Enblom, R., Berg, M.: An alternative to FASTSIM for tangential solution of the wheel–rail contact. Veh. Syst. Dyn. 54(6), 748–764 (2016)

    Article  Google Scholar 

  15. Zhai, W., Wang, K., Cai, C.: Fundamentals of vehicle–track coupled dynamics. Veh. Syst. Dyn. 47(11), 1349–1376 (2009)

    Article  Google Scholar 

  16. Liu, B., Bruni, S.: Comparison of wheel–rail contact models in the context of multibody system simulation: Hertzian versus non-Hertzian. Veh. Syst. Dyn. 60(3), 1076–1096 (2022)

    Article  Google Scholar 

  17. Knothe, K., Hung, L.T.: Determination of the tangential stresses and the wear for the wheel-rail rolling contact problem. Veh. Syst. Dyn. 15(sup1), 264–277 (1986)

    Article  Google Scholar 

  18. Piotrowski, J., Liu, B., Bruni, S.: The Kalker book of tables for non-Hertzian contact of wheel and rail. Veh. Syst. Dyn. 55(6), 875–901 (2017)

    Article  Google Scholar 

  19. Sun, Y., Zhai, W., Guo, Y.: A robust non-Hertzian contact method for wheel-rail normal contact analysis. Veh. Syst. Dyn. 56(12), 1899–1921 (2018)

    Article  Google Scholar 

  20. Zhao, X., Li, Z.: The solution of frictional wheel–rail rolling contact with a 3D transient finite element model: validation and error analysis. Wear 271(1), 444–452 (2011)

    Article  Google Scholar 

  21. Vollebregt, E.: User guide for CONTACT, Rolling and sliding contact with friction. Technical report TR 20-01, version 20.2, Vtech CMCC, Delft (2020)

  22. Li, Z.: Wheel–rail rolling contact and its application to wear simulation. Ph.D. thesis, Delft University of Technology, Delft (2002)

  23. Vollebregt, E., Segal, G.: Solving conformal wheel–rail rolling contact problems. Veh. Syst. Dyn. 52(sup1), 455–468 (2014)

    Article  Google Scholar 

  24. Kaiser, I.: Refining the modelling of vehicle–track interaction. Veh. Syst. Dyn. 50(sup1), 229–243 (2012)

    Article  Google Scholar 

  25. Kaiser, I., Poll, G., Vinolas, J.: Modelling the impact of structural flexibility of wheelsets and rails on the wheel-rail contact and the wear. Wear 504–505, 203445 (2020)

    Google Scholar 

  26. Linder, C.: Verschleiß von Eisenbahnrädern mit Unrundheiten. Ph.D. thesis, ETH, Zurich (1997)

  27. Piotrowski, J., Kik, W.: A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Veh. Syst. Dyn. 46(1–2), 27–48 (2008)

    Article  Google Scholar 

  28. Liu, B., Bruni, S., Vollebregt, E.: A non-Hertzian method for solving wheel–rail normal contact problem taking into account the effect of yaw. Veh. Syst. Dyn. 54(9), 1226–1246 (2016)

    Article  Google Scholar 

  29. Ayasse, J., Chollet, H.: Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh. Syst. Dyn. 43(3), 161–172 (2005)

    Article  Google Scholar 

  30. Sichani, M., Enblom, R., Berg, M.: A novel method to model wheel–rail normal contact in vehicle dynamics simulation. Veh. Syst. Dyn. 52(12), 1752–1764 (2014)

    Article  Google Scholar 

  31. Qazi, A., Yin, H., Sebès, M., Chollet, H., Pozzolini, C.: A semi-analytical numerical method for modelling the normal wheel–rail contact. Veh. Syst. Dyn. 60(4), 1322–1340 (2020)

    Article  Google Scholar 

  32. An, B., Wang, P.: A wheel-rail normal contact model using the combination of virtual penetration method and strip-like Boussinesq’s integral. Veh. Syst. Dyn., 1–19 (2022). https://doi.org/10.1080/00423114.2022.2085587, published online

  33. Ye, Y., Sun, Y., Shi, D., Peng, B., Hecht, M.: A wheel wear prediction model of non-Hertzian wheel-rail contact considering wheelset yaw: comparison between simulated and field test results. Wear 474, 203715 (2021)

    Article  Google Scholar 

  34. Tao, G., Wen, Z., Zhao, X., Jin, X.: Effects of wheel–rail contact modelling on wheel wear simulation. Wear 366, 146–156 (2016)

    Article  Google Scholar 

  35. An, B., Ma, D., Wang, P., Zhou, J., Chen, R., Xu, J., Cui, D.: Assessing the fast non-Hertzian methods based on the simulation of wheel–rail rolling contact and wear distribution. Proc. Inst. Mech. Eng., Part F, J. Rail Rapid Transit 234(5), 524–537 (2020)

    Article  Google Scholar 

  36. Burgelman, N., Sichani, M., Enblom, R., Berg, M., Li, Z., Dollevoet, R.: Influence of wheel–rail contact modelling on vehicle dynamic simulation. Veh. Syst. Dyn. 53(8), 1190–1203 (2015)

    Article  Google Scholar 

  37. Magalhaes, H., Marques, F., Liu, B., Antunes, P., Pombo, J., Flores, P., Ambrósio, J., Piotrowski, J., Bruni, S.: Implementation of a non-Hertzian contact model for railway dynamic application. Multibody Syst. Dyn. 48(1), 41–78 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Magalhaes, H., Marques, F., Antunes, P., Flores, P., Pombo, J., Ambrósio, J., Qazi, A., Sebes, M., Yin, H., Bezin, Y.: Wheel-rail contact models in the presence of switches and crossings. Veh. Syst. Dyn. 61(3), 838–870 (2023)

    Article  Google Scholar 

  39. Bezin, Y., Pålsson, B.A., Kik, W., Schreiber, P., Clarke, J., Beuter, V., Sebes, M., Persson, I., Magalhaes, H., Wang, P., Klauser, P.: Multibody simulation benchmark for dynamic vehicle–track interaction in switches and crossings: results and method statements. Veh. Syst. Dyn. 61(3), 660–697 (2023)

    Article  Google Scholar 

  40. Vollebregt, E.: Comments on ‘the Kalker book of tables for non-Hertzian contact of wheel and rail’. Veh. Syst. Dyn. 56(9), 1451–1459 (2018)

    Article  Google Scholar 

  41. Piotrowski, J., Bruni, S., Liu, B.: Reply to comments on ‘the Kalker book of tables for non-Hertzian contact of wheel and rail’ by EAH Vollebregt. Veh. Syst. Dyn. 56(9), 1460–1469 (2018)

    Article  Google Scholar 

  42. Arnold, M., Netter, H.: Approximation of contact geometry in the dynamical simulation of wheel-rail systems. Math. Comput. Model. Dyn. Syst. 4(2), 162–184 (1998)

    Article  MATH  Google Scholar 

  43. Sun, Y., Zhai, W., Ye, Y., Zhu, L., Guo, Y.: A simplified model for solving wheel-rail non-Hertzian normal contact problem under the influence of yaw angle. Int. J. Mech. Sci. 174, 105554 (2020)

    Article  Google Scholar 

  44. Vollebregt, E.: Detailed wheel/rail geometry processing with the conformal contact approach. Multibody Syst. Dyn. 52(2), 135–167 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vollebregt, E.: Detailed wheel/rail geometry processing using the planar contact approach. Veh. Syst. Dyn. 60(4), 1253–1291 (2022)

    Article  Google Scholar 

  46. Knothe, K., Stichel, S.: Rail Vehicle Dynamics. Springer, New York (2017)

    Book  Google Scholar 

  47. Zhai, W., Liu, P., Lin, J., Wang, K.: Experimental investigation on vibration behaviour of a CRH train at speed of 350 km/h. Int. J. Rail Transp. 3(1), 1–16 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No. 52202473], Natural Science Foundation of Jiangsu Province of China [Grant No. BK20200705], Basic Research Foundation of TaihuLight of China [Grant No. K20221050], and the Open Research Fund of Key Laboratory of Mechanical Behavior Evolution and Control of Traffic Engineering Structures in Hebei [Grant No. SZ2022-02]. We are grateful to the High Performance Computing Center of Nanjing Tech University for supporting the computational resources. Our sincere thanks to the anonymous reviewers for their very detailed and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengting Xing.

Ethics declarations

Competing Interests

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Coordinate transformation

Without loss of generality, assuming that the position vector of any point \(p\) in the coordinate system \(o_{m}\) - \(x_{m} y_{m} z_{m}\) is \(\mathbf{r}_{p}^{\left ( m \right )}\), the position vector of point \(p\) in the coordinate system \(o_{n}\) - \(x_{n} y_{n} z_{n}\) can be expressed as

$$ \mathbf{r}_{p}^{\left ( n \right )} = \mathbf{r}_{o_{m}}^{\left ( n \right )} + \mathbf{A}^{\left ( nm \right )}\mathbf{r}_{p}^{\left ( m \right )}, $$
(59)

where \(\mathbf{r}_{o_{m}}^{\left ( n \right )}\) denotes the coordinate of the origin \(o_{m}\) in the coordinate system \(o_{n}\)\(x_{n} y_{n} z_{n}\), and \(\mathbf{A}\)(nm) represents the direction transformation matrix between the coordinate system \(o_{m}\)\(x_{m} y_{m} z_{m}\) and the coordinate system \(o_{n}\)\(x_{n} y_{n} z_{n}\). In addition, any point \(p\) in the absolute coordinate system \(O\)XYZ is expressed as \(\mathbf{r}_{p}^{\left ( m \right )}\), and the direction transformation matrix between the coordinate system \(o_{m}\)\(x_{m} y_{m} z_{m}\) and the absolute coordinate system \(O\)XYZ is expressed as \(\mathbf{A}\)(m).

The transformation between the different wheel/rail coordinates introduced in Sect. 2.1.1 can be expressed as follows.

(1) Transformation between the absolute coordinate system and the wheelset coordinate system:

$$ \mathbf{r}_{p} = \mathbf{r}_{o_{\mathrm{w}}} + \mathbf{A}^{\left ( \mathrm{w} \right )}\mathbf{r}_{p}^{\left ( \mathrm{w} \right )} $$
(60)

with

$$ \mathbf{r}_{o_{\mathrm{wd}}}^{\left ( \mathrm{w} \right )} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 0 & y_{\mathrm{w}0} + Y_{\mathrm{w}} & z_{\mathrm{w}0} + Z_{\mathrm{w}} \end{array}\displaystyle \right ]^{\mathrm{T}} $$
(61)

and

$$ \mathbf{A}^{\left ( \mathrm{w},\mathrm{wd} \right )} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \cos \psi _{\mathrm{w}} & - \cos \phi _{\mathrm{w}}\sin \psi _{\mathrm{w}} & \sin \phi _{\mathrm{w}}\sin \psi _{\mathrm{w}} \\ \sin \psi _{\mathrm{w}} & \cos \phi _{\mathrm{w}}\cos \psi _{\mathrm{w}} & - \sin \phi _{\mathrm{w}}\cos \psi _{\mathrm{w}} \\ 0 & \sin \phi _{\mathrm{w}} & \cos \phi _{\mathrm{w}} \end{array}\displaystyle \right ], $$
(62)

where \(y\)w0, \(z\)w0 is the \(Y\)- and \(Z\)-coordinates of the mass center of the wheelset without dynamic motions.

(2) Transformation between the wheelset dynamic coordinate system and the right wheel–rail contact coordinate system:

$$ \mathbf{r}_{p}^{\left ( \mathrm{w} \right )} = \mathbf{r}_{o_{\mathrm{R}}}^{\left ( \mathrm{w} \right )} + \mathbf{A}^{\left ( \mathrm{w},\mathrm{R} \right )}\mathbf{r}_{p}^{\left ( \mathrm{R} \right )} $$
(63)

with

$$ \mathbf{r}_{o_{\mathrm{R}}}^{\left ( \mathrm{w} \right )} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} x_{\mathrm{cR}} & y_{\mathrm{cR}} & z_{\mathrm{cR}} \end{array}\displaystyle \right ]^{\mathrm{T}} $$
(64)

and

$$ \mathbf{A}^{\left ( \mathrm{w},\mathrm{R} \right )} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 1 & 0 & 0 \\ 0 & \cos \theta _{\mathrm{wR}} & \sin \theta _{\mathrm{wR}} \\ 0 & - \sin \theta _{\mathrm{wR}} & \cos \theta _{\mathrm{wR}} \end{array}\displaystyle \right ], $$
(65)

where (\(x\)cR, \(y\)cR, \(z\)cR) are the coordinates of the wheel–rail initial contact point, and \(\theta \)wR is the right wheel–rail contact angle.

(3) Transformation between the absolute coordinate system and the right wheel–rail contact coordinate system:

$$ \mathbf{r}_{p} = \mathbf{r}_{o_{\mathrm{R}}} + \mathbf{A}^{\left ( \mathrm{R} \right )}\mathbf{r}_{p}^{\left ( \mathrm{R} \right )} $$
(66)

with

$$ \mathbf{r}_{o_{\mathrm{R}}} = \mathbf{r}_{o_{\mathrm{w}}} + \mathbf{A}^{\left ( \mathrm{w} \right )}\mathbf{r}_{o_{\mathrm{R}}}^{\left ( \mathrm{w} \right )} $$
(67)

and

$$ \mathbf{A}^{\left ( \mathrm{R} \right )} = \mathbf{A}^{\left ( \mathrm{w} \right )}\mathbf{A}^{\left ( \mathrm{w},\mathrm{R} \right )} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \cos \psi _{\mathrm{w}} & - \cos (\phi _{\mathrm{w}} - \theta _{\mathrm{wR}})\sin \psi _{\mathrm{w}} & \sin (\phi _{\mathrm{w}} - \theta _{\mathrm{wR}})\sin \psi _{\mathrm{w}} \\ \sin \psi _{\mathrm{w}} & \cos (\phi _{\mathrm{w}} - \theta _{\mathrm{wR}})\cos \psi _{\mathrm{w}} & - \sin (\phi _{\mathrm{w}} - \theta _{\mathrm{wR}})\cos \psi _{\mathrm{w}} \\ 0 & \sin (\phi _{\mathrm{w}} - \theta _{\mathrm{wR}}) & \cos (\phi _{\mathrm{w}} - \theta _{\mathrm{wR}}) \end{array}\displaystyle \right ]. $$
(68)

(4) Transformation between the absolute coordinate system and the right rail coordinate system:

$$ \mathbf{r}_{p} = \mathbf{r}_{o_{\mathrm{rR}}} + \mathbf{A}^{\left ( \mathrm{rR} \right )}\mathbf{r}_{p}^{\left ( \mathrm{rR} \right )} $$
(69)

with

$$ \mathbf{r}_{o_{\mathrm{rR}}} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 0 & Y_{\mathrm{rR}0} + Y_{\mathrm{rR}} + Y_{\mathrm{tR}} & Z_{\mathrm{rR}0} + Z_{\mathrm{rR}} + Z_{\mathrm{tR}} \end{array}\displaystyle \right ]^{\mathrm{T}} $$
(70)

and

$$ \mathbf{A}^{\left ( \mathrm{rR} \right )} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 1 & 0 & 0 \\ 0 & \cos \left ( \phi _{\mathrm{rR}0} + \phi _{\mathrm{rR}} \right ) & \sin \left ( \phi _{\mathrm{rR}0} + \phi _{\mathrm{rR}} \right ) \\ 0 & - \sin\left ( \phi _{\mathrm{rR}0} + \phi _{\mathrm{rR}} \right ) & \cos \left ( \phi _{\mathrm{rR}0} + \phi _{\mathrm{rR}} \right ) \end{array}\displaystyle \right ], $$
(71)

where \(Y\)Rr0 and \(Z\)rR0 represent the \(Y\)- and \(Z\)-coordinates of the mass center of the right rail without dynamic motions, \(\phi \)rR0 is the rail cant, \(Y\)rR, \(Z\)rR, and \(\phi\)rR represent the lateral displacement, vertical displacement, and roll angle of the right rail, respectively, and \(Y\)tR and \(Z\)tR represent the lateral and vertical irregularities of the right rail.

Appendix B: Approximation of contact geometry in the dynamical simulation of wheel–rail systems

In the wheel–rail interaction simulation, the wheel–rail initial contact point and wheel–rail normal separation can be obtained based on the wheel–rail contact geometry. Although wheel–rail contact is a 3D contact problem, a 2D method developed by Wang could be applied in the contact geometry simulation with high efficiency. In Wang’s method [5, 43] the contact trace curve, which is the potential contact line on the wheel, is expressed analytically. In addition, the wheel–rail initial contact point and wheel—rail normal distance can be expressed as the distance between the contact trace curve and the dynamic rail location.

The contact trace curve in the absolute coordinate system can be written as

$$ \begin{aligned} \left \{ \textstyle\begin{array}{c} X_{d0}\left ( y_{\mathrm{w}} \right ) \\ Y_{d0}\left ( y_{\mathrm{w}} \right ) \\ Z_{d0}\left ( y_{\mathrm{w}} \right ) \end{array}\displaystyle \right \} & = \left \{ \textstyle\begin{array}{c} 0 \\ Y_{\mathrm{w}} \\ Z_{\mathrm{w}} \end{array}\displaystyle \right \} + y_{\mathrm{w}}\left \{ \textstyle\begin{array}{c} l_{x} \\ l_{y} \\ l_{z} \end{array}\displaystyle \right \} \\ &\quad{} + \frac{R_{\mathrm{w}}\left ( y_{\mathrm{w}} \right )}{1 - l_{x}^{2}}\left \{ \textstyle\begin{array}{c} - l_{x}\left ( 1 - l_{x}^{2} \right )\tan \theta _{\mathrm{w}}\left ( y_{\mathrm{w}} \right ) \\ l_{x}^{2}l_{y}\tan \delta _{\mathrm{w}}\left ( y_{\mathrm{w}} \right ) - l_{z}\sqrt{1 - l_{x}^{2}(1 + \tan ^{2}\theta _{\mathrm{w}}\left ( y_{\mathrm{w}} \right ))} \\ l_{x}^{2}l_{z}\tan \delta _{\mathrm{w}}\left ( y_{\mathrm{w}} \right ) + l_{y}\sqrt{1 - l_{x}^{2}(1 + \tan ^{2}\theta _{\mathrm{w}}\left ( y_{\mathrm{w}} \right ))} \end{array}\displaystyle \right \}, \end{aligned} $$
(72)

where \(l_{x}\), \(l_{y}\), and \(l_{z}\) are the direction vectors of the wheel coordinates relative to the absolute coordinate system, which can be expressed as

$$ \left \{ \textstyle\begin{array}{l} l_{x} = - \cos \phi _{\mathrm{w}}\sin \psi _{\mathrm{w}}, \\ l_{y} = \cos \phi _{\mathrm{w}}\cos \psi _{\mathrm{w}}, \\ l_{z} = \sin \phi _{\mathrm{w}}. \end{array}\displaystyle \right . $$
(73)

The location of the rail profile in the absolute coordinate system can be written as

$$ \left \{ \textstyle\begin{array}{c} Y_{\mathrm{r}} \\ Z_{\mathrm{r}}\left ( y_{\mathrm{r}} \right ) \end{array}\displaystyle \right \} = \left [ \textstyle\begin{array}{c@{\quad}c} \cos \left ( \phi _{\mathrm{rR}} + \phi _{\mathrm{rR}0} \right ) & \sin \left ( \phi _{\mathrm{rR}} + \phi _{\mathrm{rR}0} \right ) \\ - \sin\left ( \phi _{\mathrm{rR}} + \phi _{\mathrm{rR}0} \right ) & \cos \left ( \phi _{\mathrm{rR}} + \phi _{\mathrm{rR}0} \right ) \end{array}\displaystyle \right ]\left \{ \textstyle\begin{array}{c} y_{\mathrm{r}} \\ z_{\mathrm{r}}\left ( y_{\mathrm{r}} \right ) \end{array}\displaystyle \right \} + \left \{ \textstyle\begin{array}{l} Y_{\mathrm{rR}} \\ Z_{\mathrm{rR}} \end{array}\displaystyle \right \} + \left \{ \textstyle\begin{array}{l} Y_{\mathrm{tR}} \\ Z_{\mathrm{tR}} \end{array}\displaystyle \right \}, $$
(74)

where \(z_{\mathrm{r}}\left ( y_{\mathrm{r}} \right )\) is the location of the rail profile in the rail coordinate system.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Shi, F., Zhang, S. et al. Improving the robustness of non-Hertzian wheel–rail contact model for railway vehicle dynamics simulation. Multibody Syst Dyn 59, 193–237 (2023). https://doi.org/10.1007/s11044-023-09903-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-023-09903-x

Keywords

Navigation