Skip to main content
Log in

Configurational forces in variable-length beams for flexible multibody dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the problem of sliding beams or beams with sliding appendages, with special emphasis on situations where the axial motion of the beam or appendage is not prescribed a priori. Hamilton’s variational principle is used to derive the weak and strong forms of governing equations based on the systematic use of Reynolds’ transport theorem. The strong form of the governing equations involve the mechanical and configurational momentum equations, together with the proper boundary conditions. It is shown that the configurational momentum equations are linear combinations of their mechanical counterparts and hence, are redundant. A weak form of the same equations is also developed; the configurational and mechanical momentum equations become independent because they combine in an integral form the strong mechanical and configurational momentum equations with their respective natural boundary conditions. The domain- and boundary-based formulations, stemming from these two forms of the governing equations, respectively, are proposed, and numerical examples are presented to contrast their relative performances. The predictions of both formulations are found to be in good agreement with those obtained from an ABAQUS model using contact pairs. The domain-based formulation presents a higher convergence rate than the boundary-based formulation. Clearly, the proper treatment of the configurational forces impacts the accuracy of the model significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

Requests for data and materials should be made to the corresponding authors.

References

  1. Kirk, D.E.: Optimal Control Theory: An Introduction. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  2. Hu, H.C.: Variational Principles of Theory of Elasticity with Applications. Science Press, Beijing (1984)

    Google Scholar 

  3. Dems, K., Mróz, Z.: Variational approach by means of adjoint systems to structural optimization and sensitivity analysis–II: structure shape variation. Int. J. Solids Struct. 20(6), 527–552 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sokolowski, J., Zolésio, J.P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  5. Delfour, M.C., Zolésio, J.P.: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  6. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic press, New York, London, Toronto, Sydney, San Francisco (1982)

    MATH  Google Scholar 

  7. Vu-Quoc, L., Li, S.: Dynamics of sliding geometrically-exact beams: large angle maneuver and parametric resonance. Comput. Methods Appl. Mech. Eng. 120, 65–118 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Behdinan, K., Stylianou, M.C., Tabarrok, B.: Dynamics of flexible sliding beams-non-linear analysis part I: formulation. J. Sound Vib. 208(4), 517–539 (1997)

    Article  Google Scholar 

  9. Behdinan, K., Tabarrok, B.: Dynamics of flexible sliding beams - nonlinear analysis part II: transient response. J. Sound Vib. 208(4), 541–565 (1997)

    Article  Google Scholar 

  10. Hong, D., Ren, G.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pechstein, A., Gerstmayr, J.: A Lagrange-Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 30(3), 343–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Escalona, J.L.: An arbitrary Lagrangian-Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach. Theory 112, 1–21 (2017)

    Article  Google Scholar 

  13. Humer, A., Steinbrecher, I., Vu-Quoc, L.: General sliding-beam formulation: a non-material description for analysis of sliding structures and axially moving beams. J. Sound Vib. 480, 115341 (2020)

    Article  Google Scholar 

  14. Singh, N., Sharma, I., Gupta, S.S.: Dynamics of variable length geometrically exact beams in three-dimensions. Int. J. Solids Struct. 191–192, 614–627 (2020)

    Article  Google Scholar 

  15. Pennisi, G., Bauchau, O.A.: Variational principles for non-material systems within an Arbitrary Lagrangian Eulerian description of motion. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC) (2020)

    Google Scholar 

  16. Boyer, F., Lebastard, V., Candelier, F., Renda, F.: Extended Hamilton’s principle applied to geometrically exact Kirchhoff sliding rods. J. Sound Vib. 516, 116511 (2022)

    Article  Google Scholar 

  17. Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 244, 87–112 (1951)

    MathSciNet  MATH  Google Scholar 

  18. Kienzler, R., Herrmann, G.: On material forces in elementary beam theory. J. Appl. Mech. 53(3), 561–564 (1986)

    Article  Google Scholar 

  19. O’Reilly, O.M.: A material momentum balance law for rods. J. Elast. 86, 155–172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hanna, J.A.: Jump conditions for strings and sheets from an action principle. Int. J. Solids Struct. 62, 239–247 (2015)

    Article  Google Scholar 

  21. O’Reilly, O.M.: Modeling Nonlinear Problems in the Mechanics of Strings and Rods: The Role of the Balance Laws. Springer, New York (2017)

    Book  MATH  Google Scholar 

  22. Singh, H., Hanna, J.A.: On the planar elastica, stress, and material stress. J. Elast. 136, 87–101 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bigoni, D.: Instability of a penetrating blade. J. Mech. Phys. Solids 64, 411–425 (2014)

    Article  MathSciNet  Google Scholar 

  24. Bigoni, D., Dal Corso, F., Bosi, F., Misseroni, D.: Eshelby-like forces acting on elastic structures: theoretical and experimental proof. Mech. Mater. 80, 368–374 (2015)

    Article  Google Scholar 

  25. Armanini, C., Dal Corso, F., Misseroni, D., Bigoni, D.: Configurational forces and nonlinear structural dynamics. J. Mech. Phys. Solids 130, 82–100 (2019)

    Article  MathSciNet  Google Scholar 

  26. Han, S.L.: Configurational forces and geometrically exact formulation of sliding beams in non–material domains. Comput. Methods Appl. Mech. Eng. 395, 115063 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Singh, H., Hanna, J.A.: Pseudomomentum: origins and consequences. Z. Angew. Math. Phys. 72, 122 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Han, S.L., Bauchau, O.A.: Manipulation of motion via dual entities. Nonlinear Dyn. 85(1), 509–524 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bauchau, O.A.: Flexible Multibody Dynamics. Solid Mechanics and Its Applications, vol. 176. Springer, Dordrecht (2011)

    Book  Google Scholar 

  30. Lanczos, C.: The Variational Principles of Mechanics. Dover, New York (1970)

    MATH  Google Scholar 

  31. Zhong, W.X.: Duality System in Applied Mechanics and Optimal Control. Kluwer Academic, Boston, Dordrecht, New York, London (2004)

    MATH  Google Scholar 

  32. Balabukh, L.I., Vulfson, M.N., Mukoseev, B.V., Panovko, Y.G.: On work done by reaction forces of moving supports. Res. Theory Constr. 18, 190–200 (1970)

    Google Scholar 

  33. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 6th edn. Elsevier, Butterworth Heinemann, Amsterdam (2005)

    MATH  Google Scholar 

  34. Bauchau, O.A., Han, S.L.: Interpolation of rotation and motion. Multibody Syst. Dyn. 31(3), 339–370 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sonneville, V., Brüls, O., Bauchau, O.A.: Interpolation schemes for geometrically exact beams: a motion approach. Int. J. Numer. Methods Eng. 112(9), 1129–1153 (2017)

    Article  MathSciNet  Google Scholar 

  36. Han, S.L., Bauchau, O.A.: On the global interpolation of motion. Comput. Methods Appl. Mech. Eng. 337(10), 352–386 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody dynamics. J. Comput. Nonlinear Dyn. 5(3), 0310021 (2010)

    Google Scholar 

  39. Bauchau, O.A., Han, S.L.: Three-dimensional beam theory for flexible multibody dynamics. J. Comput. Nonlinear Dyn. 9(4), 041011 (2014)

    Article  Google Scholar 

  40. Han, S.L., Bauchau, O.A.: Nonlinear three-dimensional beam theory for flexible multibody dynamics. Multibody Syst. Dyn. 34(3), 211–242 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Han, S.L., Bauchau, O.A.: On Saint-Venant’s problem for helicoidal beams. J. Appl. Mech. 83(2), 021009 (2016)

    Article  Google Scholar 

  42. Han, S.L.: Sensitivity analysis for sectional stiffness of anisotropic beams: the direct and adjoint methods. Compos. Struct. 285, 115215 (2022)

    Article  Google Scholar 

Download references

Funding

Supported by the National Natural Science Foundation of China (Grant No. 12172042).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript.

Corresponding author

Correspondence to Shilei Han.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Bauchau, O.A. Configurational forces in variable-length beams for flexible multibody dynamics. Multibody Syst Dyn 58, 275–298 (2023). https://doi.org/10.1007/s11044-022-09866-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-022-09866-5

Keywords

Navigation