Skip to main content
Log in

Sensitivity-analysis methods for nonsmooth multibody systems with contact and friction

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A large number of collisions and frictions often occur in multibody systems. These nonsmooth events lead to discontinuous or piecewise-continuous dynamic equations of multibody systems, which brings great difficulties to the numerical solution. Accordingly, it is very difficult to calculate the dynamic sensitivity of nonsmooth multibody systems. In this paper, the analytical sensitivity formula of nonsmooth multibody systems with contact and friction is derived by the direct differentiation method. Also, a complete and unified mathematical framework for dynamic sensitivity analysis of nonsmooth multibody systems is given. On this basis, combined with the advantages of the finite-difference method, a semianalytical sensitivity-analysis method for nonsmooth multibody systems is further derived. For the dynamic equations in the form of differential–algebraic equations, the formulas of analytical and semianalytical sensitivity-analysis methods are given, including a global semianalytical method and a local semianalytical method. The correctness is verified by three numerical examples of nonsmooth multibody systems, and the results show that the semianalytical sensitivity-analysis method is effective and practical in engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Benvenuto, R., Lavagna, M., Salvi, S.: Multibody dynamics driving GNC and system design in tethered nets for active debris removal. Adv. Space Res. 58(1), 45–63 (2016)

    Article  Google Scholar 

  2. Sun, J.L., Tian, Q., Hu, H.Y., Pedersen, N.L.: Topology optimization of a flexible multibody system with variable-length bodies described by ALE-ANCF. Nonlinear Dyn. 93(2), 413–441 (2018)

    Article  MATH  Google Scholar 

  3. Peng, H.J., Li, F., Liu, J.G., Ju, Z.J.: A symplectic instantaneous optimal control for robot trajectory tracking with differential-algebraic equation models. IEEE Trans. Ind. Electron. 67(5), 3819–3829 (2020)

    Article  Google Scholar 

  4. Callejo, A., Dopico, D.: Direct sensitivity analysis of multibody systems: a vehicle dynamics benchmark. J. Comput. Nonlinear Dyn. 14(2), 1–9 (2019)

    Google Scholar 

  5. Pfeiffer, F., Glocker, C.: Contacts in multibody systems. J. Appl. Math. Mech. 64(5), 773–782 (2000)

    Article  MATH  Google Scholar 

  6. Yu, X.X., Matikainen, M.K., Harish, A.B., Mikkola, A.: Procedure for non-smooth contact for planar flexible beams with cone complementarity problem. Proc. Inst. Mech. Eng., Part K, J. Multi-Body Dyn. 235(2), 179–196 (2021)

    Google Scholar 

  7. Botta, E.M., Sharf, I., Misra, A.K.: Contact dynamics modeling and simulation of tether nets for space-debris capture. J. Guid. Control Dyn. 40(1), 110–123 (2017)

    Article  Google Scholar 

  8. Skrinjar, L., Slavic, J., Boltezar, M.: A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 145, 171–187 (2018)

    Article  Google Scholar 

  9. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  10. Moreau, J.: Unilateral Problems in Structural Analysis, pp. 173–221. Springer, Vienna (1985)

    Book  Google Scholar 

  11. Gao, H.P., Wang, Q., Wang, S.M., Fu, L.: A linear complementarity model for multibody systems with frictional unilateral and bilateral constraints. Acta Mech. Sin. 27(4), 587–592 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhuang, F.F., Wang, Q.: Modeling and analysis of rigid multibody systems with driving constraints and frictional translation joints. Acta Mech. Sin. 30(3), 437–446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Anitescu, M., Hart, G.D.: A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Int. J. Numer. Methods Eng. 60(14), 2335–2371 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, L., Wang, Q., Wang, S.M.: Time-stepping for multibody dynamics with friction-affected bilateral constraints. Prog. Nat. Sci. 19(12), 1799–1804 (2009)

    Article  Google Scholar 

  15. Peng, H.J., Song, N.N., Kan, Z.Y.: A novel nonsmooth dynamics method for multibody systems with friction and impact based on the symplectic discrete format. Int. J. Numer. Methods Eng. 121(7), 1530–1557 (2020)

    Article  MathSciNet  Google Scholar 

  16. Song, N.N., Peng, H.J., Kan, Z.Y., Chen, B.S.: A novel nonsmooth approach for flexible multibody systems with contact and friction in 3D space. Nonlinear Dyn. 102, 1375–1408 (2020)

    Article  Google Scholar 

  17. Kanzow, C.: Some noninterior continuation methods for linear complementarity problems. SIAM J. Matrix Anal. Appl. 17(4), 851–868 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tromme, E., Bruls, O., Duysinx, P.: Weakly and fully coupled methods for structural optimization of flexible mechanisms. Multibody Syst. Dyn. 38(4), 391–417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, M.R., Peng, H.J., Song, N.N.: Semi-analytical sensitivity analysis approach for fully coupled optimization of flexible multibody systems. Mech. Mach. Theory 159, 104256 (2021)

    Article  Google Scholar 

  20. Ding, J.Y., Pan, Z.K., Chen, L.Q.: Second-order sensitivity analysis of multibody systems described by differential/algebraic equations: adjoint variable approach. Int. J. Comput. Math. 85(6), 899–913 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ding, J.Y., Pan, Z.K., Chen, L.Q.: Parameter identification of multibody systems based on second order sensitivity analysis. Int. J. Non-Linear Mech. 47(10), 1105–1110 (2012)

    Article  Google Scholar 

  22. Peng, H.J., Zhang, M.R., Zhang, L.D.: Semi-analytical sensitivity analysis for multibody system dynamics described by differential-algebraic equations. AIAA J. 59(3), 893–904 (2021)

    Article  Google Scholar 

  23. Greene, W.H., Haftka, R.T.: Computational aspects of sensitivity calculations in linear transient structural analysis. Struct. Optim. 3(3), 176–201 (1991)

    Article  Google Scholar 

  24. Etman, L.F.P., van Campen, D.H., Schoofs, A.J.G.: Design optimization of multibody systems by sequential approximation. Multibody Syst. Dyn. 2(4), 393–415 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haug, E.J., Mani, N.K., Krishnasawami, P.: Computer Aided Analysis and Optimization of Mechanical System Dynamics, pp. 555–636. Springer, Berlin (1984)

    Book  Google Scholar 

  26. Haug, E.J., Arora, J.S.: Design sensitivity analysis of elastic mechanical systems. Comput. Methods Appl. Mech. Eng. 15(1), 35–62 (1978)

    Article  MATH  Google Scholar 

  27. Dopico, D., González, F., Luaces, A., Saura, M., García-Vallejo, D.: Direct sensitivity analysis of multibody systems with holonomic and nonholonomic constraints via an index-3 augmented Lagrangian formulation with projections. Nonlinear Dyn. 93(4), 2039–2056 (2018)

    Article  Google Scholar 

  28. Pi, T., Zhang, Y.Q., Chen, L.P.: First order sensitivity analysis of flexible multibody systems using absolute nodal coordinate formulation. Multibody Syst. Dyn. 27(2), 153–171 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nachbagauer, K., Oberpeilsteiner, S., Sherif, K., Steiner, W.: The use of the adjoint method for solving typical optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 10(6), 061011 (2015)

    Article  Google Scholar 

  30. Sonneville, V., Bruls, O.: Sensitivity analysis for multibody systems formulated on a Lie group. Multibody Syst. Dyn. 31(1), 47–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Corner, S., Sandu, C., Sandu, A.: Modeling and sensitivity analysis methodology for hybrid dynamical system. Nonlinear Anal. Hybrid Syst. 31, 19–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Corner, S., Sandu, C., Sandu, A.: Adjoint sensitivity analysis of hybrid multibody dynamical systems. Multibody Syst. Dyn. 49(4), 395–420 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ding, Z., Zhang, L., Gao, Q., Liao, W.H.: State-space based discretize-then-differentiate adjoint sensitivity method for transient responses of non-viscously damped systems. Comput. Struct. 250, 106540 (2021)

    Article  Google Scholar 

  34. Anitescu, M., Potra, F.A., Stewart, D.E.: Time-stepping for three-dimensional rigid body dynamics. Comput. Methods Appl. Mech. Eng. 177(3–4), 183–197 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Acary, V.: Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput. Methods Appl. Mech. Eng. 256, 224–250 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cheng, G.D., Liu, Y.W.: A new computation scheme for sensitivity analysis. Eng. Optim. 12(3), 219–234 (1987)

    Article  Google Scholar 

  37. Zhang, L.D., Chen, B.S.: Modified semi-analytical sensitivity analysis method and its application to stiffened structures. AIAA J. 56(9), 3791–3798 (2018)

    Article  Google Scholar 

  38. Wang, Q.T., Tian, Q., Hu, H.Y.: Dynamic simulation of frictional contacts of thin beams during large overall motions via absolute nodal coordinate formulation. Nonlinear Dyn. 77(4), 1411–1425 (2014)

    Article  MathSciNet  Google Scholar 

  39. Kan, Z.Y., Peng, H.J., Chen, B.S., Zhong, W.X.: Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation FEM. Compos. Struct. 187, 241–258 (2018)

    Article  Google Scholar 

  40. Murakami, H., Nishimura, Y.: Static and dynamic characterization of regular truncated icosahedral and dodecahedral tensegrity modules. Int. J. Solids Struct. 38(50–51), 9359–9381 (2001)

    Article  MATH  Google Scholar 

  41. Kan, Z.Y., Li, F., Peng, H.J., Chen, B.S., Song, X.G.: Sliding cable modeling: a nonlinear complementarity function based framework. Mech. Syst. Signal Process. 146, 107021 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (grant numbers 11922203, 11772074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Peng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Zhang, M., Song, N. et al. Sensitivity-analysis methods for nonsmooth multibody systems with contact and friction. Multibody Syst Dyn 54, 345–371 (2022). https://doi.org/10.1007/s11044-022-09810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-022-09810-7

Keywords

Navigation