Skip to main content
Log in

Inverse dynamics of underactuated planar manipulators without inertial coupling singularities

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a model for the inverse dynamics of underactuated manipulators that is free from inertial coupling singularities. The framework’s main idea is to include a small-amplitude wave on the trajectory of the rotating active joints. First, we derive the modified nonlinear dynamics for the multijoint manipulators with multiple degrees-of-freedom (DoF). Next, a 4-DoF mass-rotating underactuated manipulator with two passive and two active joints is chosen. Then, a condition assuming the positive definiteness of the inertia matrix is developed to have the singularity-free inverse dynamics. Finally, we analytically study how singularities can be avoided and show an example simulation with a feed-forward control at the singular configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Please, check Proposition 1 for the details of parameter design.

References

  1. Agrawal, S.K.: Inertia matrix singularity of planar series-chain manipulators. In: IEEE International Conference on Robotics and Automation, pp. 102–107 (1991)

    Google Scholar 

  2. Albahkali, T., Mukherjee, R., Das, T.: Swing-up control of the Pendubot: an impulse–momentum approach. IEEE Trans. Robot. 25(4), 975–982 (2009)

    Article  Google Scholar 

  3. Altmann, R., Betsch, P., Yang, Y.: Index reduction by minimal extension for the inverse dynamics simulation of cranes. Multibody Syst. Dyn. 36(3), 295–321 (2016)

    Article  MathSciNet  Google Scholar 

  4. Arai, H., Tachi, S.: Position control of manipulator with passive joints using dynamic coupling. IEEE Trans. Robot. Autom. 7(4), 528–534 (1991)

    Article  Google Scholar 

  5. Bastos, G., Seifried, R., Brüls, O.: Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach. Multibody Syst. Dyn. 30(3), 359–376 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bellino, A., Fasana, A., Gandino, E., Garibaldi, L., Marchesiello, S.: A time-varying inertia pendulum: analytical modelling and experimental identification. Mech. Syst. Signal Process. 47(1–2), 120–138 (2014)

    Article  Google Scholar 

  7. Bergerman, M., Lee, C., Xu, Y.: A dynamic coupling index for underactuated manipulators. J. Robot. Syst. 12(10), 693–707 (1995)

    Article  Google Scholar 

  8. Blajer, W., Seifried, R., Kołodziejczyk, K.: Servo-constraint realization for underactuated mechanical systems. Arch. Appl. Mech. 85(9), 1191–1207 (2015)

    Article  Google Scholar 

  9. Chenarani, H., Binazadeh, T.: Flexible structure control of unmatched uncertain nonlinear systems via passivity-based sliding mode technique. Iran. J. Sci. Technol. Trans. Electr. Eng. 41(1), 1–11 (2017)

    Article  Google Scholar 

  10. Eom, M., Chwa, D.: Robust swing-up and balancing control using a nonlinear disturbance observer for the Pendubot system with dynamic friction. IEEE Trans. Robot. 31(2), 331–343 (2015)

    Article  Google Scholar 

  11. Fevre, M., Goodwine, B., Schmiedeler, J.P.: Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control. Int. J. Robot. Res. 38(10–11), 1307–1323 (2019)

    Article  Google Scholar 

  12. Freidovich, L., Robertsson, A., Shiriaev, A., Johansson, R.: Periodic motions of the Pendubot via virtual holonomic constraints: theory and experiments. Automatica 44(3), 785–791 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gandino, E., Marchesiello, S., Bellino, A., Fasana, A., Garibaldi, L.: Damping effects induced by a mass moving along a pendulum. Shock Vib. 2014, 314527 (2014)

    Google Scholar 

  14. Jafari, R., Mathis, F.B., Mukherjee, R.: Swing-up control of the Acrobot: an impulse-momentum approach. In: Proceedings of the 2011 American Control Conference, pp. 262–267 (2011)

    Chapter  Google Scholar 

  15. Liu, Y., Yu, H.: A survey of underactuated mechanical systems. IET Control Theory Appl. 7(7), 921–935 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ramasamy, S., Wu, G., Sreenath, K.: Dynamically feasible motion planning through partial differential flatness. In: Robotics: Science and Systems (2014). Citeseer

    Google Scholar 

  17. Spong, M.W.: Partial feedback linearization of underactuated mechanical systems. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 314–321 (1994)

    Google Scholar 

  18. Spong, M.W.: The swing up control problem for the Acrobot. IEEE Control Syst. Mag. 15(1), 49–55 (1995)

    Article  Google Scholar 

  19. Spong, M.W.: Energy based control of a class of underactuated mechanical systems. IFAC Proc. Vol. 29(1), 2828–2832 (1996). 13th World Congress of IFAC

    Article  Google Scholar 

  20. Spong, M.W., Block, D.J.: The pendubot: a mechatronic system for control research and education. In: Proceedings of 1995 34th IEEE Conference on Decision and Control, vol. 1, pp. 555–556 (1995)

    Chapter  Google Scholar 

  21. Stilling, D.S., Szyszkowski, W.: Controlling angular oscillations through mass reconfiguration: a variable length pendulum case. Int. J. Non-Linear Mech. 37(1), 89–99 (2002)

    Article  Google Scholar 

  22. Ströhle, T., Betsch, P.: Solution techniques for problems of inverse dynamics of flexible underactuated systems. In: European Congress on Computational Methods in Applied Sciences and Engineering, pp. 131–138. Springer, Berlin (2019)

    Google Scholar 

  23. Svinin, M., Goncharenko, I., Luo, Z.W., Hosoe, S.: Reaching movements in dynamic environments: how do we move flexible objects? IEEE Trans. Robot. 22(4), 724–739 (2006)

    Article  Google Scholar 

  24. Tafrishi, S.A., Bai, Y., Svinin, M., Esmaeilzadeh, E., Yamamoto, M.: Inverse dynamics-based motion control of a fluid-actuated rolling robot. Russ. J. Nonlinear Dyn. 15(4), 611–622 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Tafrishi, S.A., Svinin, M., Esmaeilzadeh, E., Yamamoto, M.: Design, modeling, and motion analysis of a novel fluid actuated spherical rolling robot. J. Mech. Robot. 11(4), 041010 (2019)

    Article  Google Scholar 

  26. Tafrishi, S.A., Svinin, M., Yamamoto, M.: Singularity-free inverse dynamics for underactuated systems with a rotating mass. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3981–3987 (2020)

    Chapter  Google Scholar 

  27. Tedrake, R.: Underactuated robotics: learning, planning, and control for efficient and agile machines course notes for MIT 6.832 (2009)

  28. Yabuno, H., Matsuda, T., Aoshima, N.: Reachable and stabilizable area of an underactuated manipulator without state feedback control. IEEE/ASME Trans. Mechatron. 10(4), 397–403 (2005)

    Article  Google Scholar 

  29. Zhang, M., Tarn, T.J.: A hybrid switching control strategy for nonlinear and underactuated mechanical systems. IEEE Trans. Robot. Autom. 48(10), 1777–1782 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by the Japan Science and Technology Agency, the JST Strategic International Collaborative Research Program, Project No. 18065977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Amir Tafrishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(MP4 2.4 MB)

Appendix A: Dynamics of the 4-DoF manipulator

Appendix A: Dynamics of the 4-DoF manipulator

We show the 4-DoF nonlinear dynamics of a manipulator by the derived general formulation in Sect. 3.

In our study, we consider our system with two passive and two active joints. The active joints on the second and forth links have the wavy trajectory with variables \(\{a_{2},n_{2},\varepsilon _{2}\}\) and \(\{a_{4},n_{4},\varepsilon _{4}\}\). The passive joints in the first and third links do not have the wave functions \(a_{1}=n_{1}=\varepsilon _{1}=0\) and \(a_{3}=n_{3}=\varepsilon _{3}=0\). So for the considered system, the Lagrangian function in (10) becomes

$$\begin{aligned} &L= \frac{1}{2} ( m_{1}+m_{2}+m_{3}+m_{4}) l^{2}_{1} \dot{q}^{2}_{1}+ \frac{1}{2} (m_{3}+m_{4}) l^{2}_{3} \dot{q}^{2}_{3} \\ &+\frac{1}{2} (m_{2}+m_{3}+m_{4})\dot{q}_{2}^{2} \big[ a^{2}_{2} n^{2}_{2} \cos ^{2}(n_{2} q_{2}+\varepsilon _{2}) +(l_{2}+a_{2} \sin (n_{2} q_{2} +\varepsilon _{2} ))^{2} \big] \\ &+\frac{1}{2}m_{4} \dot{q}_{4}^{2} \big[ a^{2}_{4} n^{2}_{4} \cos ^{2}(n_{4} q_{4}+\varepsilon _{4}) +(l_{4}+a_{4} \sin (n_{4} q_{4} +\varepsilon _{4}))^{2} \big] \\ &+(m_{2}+m_{3}+m_{4})\dot{q}_{1} \dot{q}_{2} \big[ l_{1} (l_{2}+a_{2} \sin (n_{2} q_{2}+\varepsilon _{2}))\cos (q_{1}-q_{2}) \\ &+ a_{2} n_{2} l_{1} \cos (n_{2} q_{2} +\varepsilon _{2})\sin (q_{2}-q_{1}) \big] +(m_{3}+m_{4}) \dot{q}_{1} \dot{q}_{3} l_{1}l_{3}\cos (q_{1}-q_{3}) \\ &+ (m_{3}+m_{4}) \dot{q}_{2} \dot{q}_{3} \big[ l_{3} (l_{2} +a_{2} \sin (n_{2} q_{2}+\varepsilon _{2}))\cos (q_{2}-q_{3}) \\ &+ a_{2} n_{2} l_{3} \cos (n_{2} q_{2} +\varepsilon _{2})\sin (q_{2}-q_{3}) \big] \\ &+ m_{4} \dot{q}_{1} \dot{q}_{4} \big[ l_{1}(l_{4}+a_{4}\sin (n_{4}q_{4}+ \varepsilon _{4}))\cos (q_{1}-q_{4}) +a_{4}n_{4}l_{1} \cos (n_{4}q_{4}+ \varepsilon _{4}) \sin (q_{4}-q_{1}) \big] \\ &+m_{4} \dot{q}_{2} \dot{q}_{4} \big[ (l_{2}+ a_{2}\sin (n_{2}q_{2}+ \varepsilon _{2}))(l_{4}+a_{4}\sin (n_{4}q_{4}+\varepsilon _{4})) \cos (q_{2}-q_{4}) \\ & + a_{2}n_{2}a_{4} n_{4} \cos (n_{2}q_{2}+\varepsilon _{2})\cos (n_{4}q_{4}+ \varepsilon _{4}) \cos (q_{2}-q_{4}) \\ &+ a_{2}n_{2}(l_{4}+a_{4}\sin (n_{4}q_{4}+\varepsilon _{4})) \cos (n_{2}q_{2}+ \varepsilon _{2}) \sin (q_{2}-q_{4}) \\ &+a_{4}n_{4}(l_{2}+a_{2}\sin (n_{2}q_{2}+\varepsilon _{2})) \cos (n_{4}q_{4}+ \varepsilon _{4}) \sin (q_{4}-q_{2}) \big] \\ &+ m_{4} \dot{q}_{3} \dot{q}_{4} \big[ l_{3}(l_{4}+a_{4}\sin (n_{4}q_{4}+ \varepsilon _{4}))\cos (q_{3}-q_{4}) +a_{4}n_{4}l_{3} \cos (n_{4}q_{4}+ \varepsilon _{4}) \sin (q_{4}-q_{3}) \big] \\ & +\frac{1}{2} \sum ^{4}_{k=1} I_{k} \left ( \sum ^{k}_{i=1} \dot{q}_{k} \right )^{2}+\sum ^{4}_{k=1} \sum _{i=1}^{k} m_{k} g \left (l_{i}+a_{i} \sin \left ( n_{i} q_{i} +\varepsilon _{i}\right )\right ) \cos q_{i} . \end{aligned}$$
(28)

Furthermore, by using equation (28) and the Lagrangian equations (11), the motion equation terms of (12) become

$$\begin{aligned} & \mathbf {M}^{*}= \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} {M}_{11} & {M}_{12}& {M}_{13} &{M}_{14} \\ {M}_{21} & {M}_{22}& {M}_{23} &{M}_{24} \\ {M}_{31} & {M}_{32} & {M}_{33} &{M}_{34} \\ {M}_{41}& {M}_{42}& {M}_{43} & {M}_{44} \\ \end{array}\displaystyle \right ], \ \mathbf {h}^{*}= \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} {h}_{1}& {h}_{2} & {h}_{3} & {h}_{4} \end{array}\displaystyle \right ]^{T},\ \mathbf {u}^{*}=\left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 0& {\tau }_{2}& 0 &{\tau }_{4} \end{array}\displaystyle \right ]^{T}, \end{aligned}$$
(29)

where

$$\begin{aligned} &M_{11}=I_{1}+I_{2}+I_{3}+I_{4} + (m_{1}+m_{2}+m_{3}+m_{4})l^{2}_{1}, \\ &M_{22}=I_{2}+I_{3}+I_{4}+(m_{2}+m_{3}+m_{4})\big[a_{2}^{2}n^{2}_{2} \cos ^{2}(n_{2}q_{2}+\varepsilon _{2}) +(l_{2}+a_{2}\sin (n_{2}q_{2}+ \varepsilon _{2}))^{2}\big], \\ &M_{33}=I_{3}+I_{4}+(m_{3}+m_{4})l^{2}_{3},\; \\ &M_{44}=I_{4}+m_{4}\big[a_{4}^{2}n^{2}_{4}\cos ^{2}(n_{4}q_{4}+ \varepsilon _{4})+(l_{4}+a_{4}\sin (n_{4}q_{4}+\varepsilon _{4}))^{2} \big], \\ &M_{12} = M_{21}=I_{2}+I_{3}+I_{4} +(m_{2}+m_{3}+m_{4})\big[l_{1}(l_{2}+a_{2} \sin (n_{1}q_{1}+\varepsilon _{1}))\cos (q_{1}-q_{2}) \\ &+a_{2} n_{2} l_{1} \cos (n_{2}q_{2}+\varepsilon _{2})\sin (q_{2}-q_{1}) \big], \\ &M_{13} =M_{31}=I_{3}+I_{4}+ (m_{3}+m_{4})l_{1}l_{3}\cos (q_{1}-q_{3}), \\ & M_{23} =M_{32}= I_{3}+I_{4}+ (m_{3}+m_{4}) \big[ l_{3}(l_{2} +a_{2} \sin (n_{2} q_{2} +\varepsilon _{2}))\cos (q_{2}-q_{3}) \\ &+a_{2}n_{2}l_{3}\cos (n_{2} q_{2}+\varepsilon _{2})\sin (q_{2}-q_{3}) \big], \\ &M_{34} = M_{43}=I_{4}+ m_{4} \big[ l_{3} (l_{4}+a_{4}\sin (n_{4} q_{4} + \varepsilon _{4}))\cos (q_{3}-q_{4}) \\ &+a_{4} n_{4} l_{3} \cos (n_{4} q_{4} +\varepsilon _{4})\sin (q_{4}-q_{3}) \big], \\ &M_{14} =M_{41}=I_{4}+m_{4}\big[ l_{1}(l_{4}+a_{4}\sin (n_{4}q_{4}+ \varepsilon _{4}))\cos (q_{1}-q_{4}) \\ &+a_{4}n_{4}l_{1}\cos (n_{4}q_{4}+\varepsilon _{4})\sin (q_{4}-q_{1}) \big], \\ &M_{24} =M_{42}=I_{4}+m_{4} \big[ (l_{2}+a_{2}\sin (n_{2}q_{2}+ \varepsilon _{2})) (l_{4} +a_{4}\sin (n_{4}q_{4}+\varepsilon _{4})) \cos (q_{2}-q_{4}) \\ &+a_{2}n_{2}a_{4} n_{4} \cos (n_{2}q_{2}+\varepsilon _{2})\cos (n_{4}q_{4}+ \varepsilon _{4}) \cos (q_{2}-q_{4}) \\ &+ a_{2}n_{2}(l_{4}+a_{4}\sin (n_{4}q_{4}+\varepsilon _{4})) \cos (n_{2}q_{2}+ \varepsilon _{2}) \sin (q_{2}-q_{4}) \\ &+a_{4}n_{4}(l_{2}+a_{2}\sin (n_{2}q_{2}+\varepsilon _{2})) \cos (n_{4}q_{4}+ \varepsilon _{4}) \sin (q_{4}-q_{2}) \big]. \end{aligned}$$
(30)

Additionally, the velocity dependencies and gravitational terms \(h_{k}\) in each link are obtained by using (13) as

$$\begin{aligned} h_{1}&=(m_{2}+m_{3}+m_{4})\dot{q}^{2}_{2} \big[2a_{2} n_{2} l_{1} \cos (n_{2} q_{2} +\varepsilon _{2}) \cos (q_{1}-q_{2}) \\ +&l_{1}(l_{2}+a_{2}\sin (n_{2}q_{2}+\varepsilon _{2}))\sin (q_{1}-q_{2})-a_{2} n^{2}_{2} l_{1} \sin (n_{2} q_{2}+\varepsilon _{2}) \sin (q_{2}-q_{1}) \big] \\ +& (m_{3}+m_{4}) \dot{q}^{2}_{3} \big[ l_{1} l_{3} \sin (q_{1}-q_{3}) \big] \\ +&m_{4} \dot{q}^{2}_{4} \big[2a_{4} n_{4} l_{1} \cos (n_{4} q_{4} + \varepsilon _{4}) \cos (q_{1}-q_{4}) \\ +&l_{1}(l_{4}+a_{4}\sin (n_{4}q_{4}+\varepsilon _{4}))\sin (q_{1}-q_{4})-a_{4} n^{2}_{4} l_{1} \sin (n_{4} q_{4}+\varepsilon _{4}) \sin (q_{4}-q_{1}) \big] \\ +&(m_{1}+m_{2}+m_{3}+m_{4})g \big[ (l_{1}+a_{1}\sin (n_{1}q_{1}+ \varepsilon _{1}))\sin q_{1} -a_{1}n_{1}\cos (n_{1}q_{1}+\varepsilon _{1}) \cos q_{1} \big], \\ h_{2}&=(m_{2}+m_{3}+m_{4})\dot{q}^{2}_{1} \big[2a_{2} n_{2} l_{1} \cos (n_{2} q_{2} +\varepsilon _{2}) \cos (q_{1}-q_{2}) \\ +&l_{1}(l_{2}+a_{2}\sin (n_{2}q_{2}+\varepsilon _{2}))\sin (q_{1}-q_{2})-a_{2} n^{2}_{2} l_{1} \sin (n_{2} q_{2}+\varepsilon _{2}) \sin (q_{2}-q_{1}) \big] \\ +&(m_{2}+m_{3}+m_{4})\dot{q}^{2}_{2} \big[ a_{2} n_{2} \cos (n_{2} q_{2} + \varepsilon _{2}) (l_{2}+a_{2}\sin (n_{2} q_{2}+\varepsilon _{2})) \\ -&a^{2} n^{3}_{2} \sin (n_{2} q_{2} +\varepsilon _{2}) \cos (n_{2} q_{2} +\varepsilon _{2}) \big] \\ +&(m_{3}+m_{4})\dot{q}^{2}_{3} \big[l_{3}(l_{2}+a_{2}\sin (n_{2}q_{2}+ \varepsilon _{2}))\sin (q_{2}-q_{3})-a_{2}n_{2}l_{3}\cos (n_{2}q_{2} \\ +& \varepsilon _{2})\cos (q_{2}-q_{3})\big] \\ +&m_{4}\dot{q}^{2}_{4}\big[ 2a_{4} n_{4} \cos (n_{4} q_{4} + \varepsilon _{4}) (l_{2}+a_{2}\sin (n_{2} q_{2}+ \varepsilon _{2})) \cos (q_{2}-q_{4}) \\ +&2a_{2} n_{2} a_{4}n_{4}\cos (n_{2} q_{2}+\varepsilon _{2}) \cos (n_{4} q_{4}+\varepsilon _{4})\sin (q_{2}-q_{4}) \\ +&(l_{2}+a_{2}\sin (n_{2} q_{2}+\varepsilon _{2})) (l_{4}+a_{4}\sin (n_{4} q_{4} +\varepsilon _{4}))\sin (q_{2}-q_{4}) \\ -&a_{2} n_{2} a_{4} n^{2}_{4}\sin (n_{4}q_{4}+\varepsilon _{4}) \cos (n_{2} q_{2} +\varepsilon _{2})\cos (q_{2}-q_{4}) \\ -&a_{2}n_{2}(l_{4}+a_{4}\sin (n_{4}q_{4}+\varepsilon _{4}))\cos (n_{2}q_{2}+ \varepsilon _{2})\cos (q_{2}-q_{4}) \\ -&a_{4}n^{2}_{4}(l_{2}+a_{2}\sin (n_{2}q_{2}+\varepsilon _{2}))\sin (n_{4}q_{4}+ \varepsilon _{4})\sin (q_{4}-q_{2})\big] \\ +&(m_{2}+m_{3}+m_{4})g \big[ (l_{2}+a_{2}\sin (n_{2}q_{2}+ \varepsilon _{2}))\sin q_{2}-a_{2}n_{2}\cos (n_{2}q_{2}+\varepsilon _{2}) \cos q_{2} \big], \end{aligned}$$

and

$$\begin{aligned} h_{3}& =(m_{3}+m_{4}) \dot{q}^{2}_{1} \big[ l_{1} l_{3} \sin (q_{1}-q_{3}) \big] \hfill \\ +& (m_{3}+m_{4})\dot{q}^{2}_{2} \big[l_{3}(l_{2}+a_{2}\sin (n_{2}q_{2}+ \varepsilon _{2}))\sin (q_{2}-q_{3}) \\ -& a_{2}n_{2}l_{3}\cos (n_{2}q_{2} + \varepsilon _{2})\cos (q_{2}-q_{3})\big] \\ +&m_{4}\dot{q}^{2}_{4} \big[ 2a_{4}n_{4} l_{3} \cos (n_{4}q_{4}+ \varepsilon _{4}) \cos (q_{3}-q_{4}) \\ +& l_{3} (l_{4}+a_{4}\sin (n_{4}q_{4}+\varepsilon _{4}))\sin (q_{3}-q_{4})- a_{4}n^{2}_{4}l_{3} \sin (n_{4}q_{4}+\varepsilon _{4})\sin (q_{4}-q_{3}) \big] \\ +& (m_{3}+m_{4})g \big[ (l_{3}+a_{3}\sin (n_{3}q_{3}+\varepsilon _{3})) \sin q_{3}-a_{3}n_{3}\cos (n_{3}q_{3}+\varepsilon _{3})\cos q_{3} \big] , \\ h_{4}& = m_{4} \dot{q}^{2}_{1} \big[2a_{4} n_{4} l_{1} \cos (n_{4} q_{4} +\varepsilon _{4}) \cos (q_{1}-q_{4})+l_{1}(l_{4}+a_{4}\sin (n_{4}q_{4}+ \varepsilon _{4}))\sin (q_{1}-q_{4}) \\ -& a_{4} n^{2}_{4} l_{1} \sin (n_{4} q_{4}+\varepsilon _{4}) \sin (q_{4}-q_{1}) \big] \\ +& m_{4}\dot{q}^{2}_{2}\big[ 2a_{4} n_{4} \cos (n_{4} q_{4} + \varepsilon _{4})(l_{2}+a_{2}\sin (n_{2} q_{2}+ \varepsilon _{2})) \cos (q_{2}-q_{4}) \\ + &2a_{2} n_{2} a_{4}n_{4}\cos (n_{2} q_{2}+\varepsilon _{2})\cos (n_{4} q_{4}+\varepsilon _{4})\sin (q_{2}-q_{4}) \\ +&(l_{2}+a_{2}\sin (n_{2} q_{2}+\varepsilon _{2})) (l_{4}+a_{4}\sin (n_{4} q_{4} +\varepsilon _{4}))\sin (q_{2}-q_{4}) \\ -& a_{2} n_{2} a_{4} n^{2}_{4}\sin (n_{4}q_{4}+\varepsilon _{4}) \cos (n_{2} q_{2} +\varepsilon _{2})\cos (q_{2}-q_{4}) \\ -&a_{2}n_{2}(l_{4}+a_{4}\sin (n_{4}q_{4}+\varepsilon _{4})) \cos (n_{2}q_{2}+ \varepsilon _{2})\cos (q_{2}-q_{4}) \\ -&a_{4}n^{2}_{4}(l_{2}+a_{2}\sin (n_{2}q_{2}+\varepsilon _{2})) \sin (n_{4}q_{4}+\varepsilon _{4})\sin (q_{4}-q_{2})\big] \\ +& m_{4}\dot{q}^{2}_{3} \big[ 2a_{4}n_{4} l_{3} \cos (n_{4}q_{4}+ \varepsilon _{4}) \cos (q_{3}-q_{4}) \\ +& l_{3} (l_{4}+a_{4}\sin (n_{4}q_{4}+\varepsilon _{4}))\sin (q_{3}-q_{4})- a_{4}n^{2}_{4}l_{3} \sin (n_{4}q_{4}+\varepsilon _{4})\sin (q_{4}-q_{3}) \big] \\ +& m_{4}\dot{q}^{2}_{4}[a_{4} n_{4} \cos (n_{4} q_{4} + \varepsilon _{4})(l_{4}+a_{4} \sin (n_{4} q_{4}+\varepsilon _{4}))-a^{2}_{4} n^{3}_{4} \sin (n_{4} q_{4} +\varepsilon _{4}) \cos (n_{4} q_{4} +\varepsilon _{4})] \\ +& m_{4} g \big[ (l_{4}+a_{4}\sin (n_{4}q_{4}+\varepsilon _{4})) \sin (q_{4})-a_{4}n_{4}\cos (n_{4}q_{4}+\varepsilon _{4})\cos (q_{4}) \big]. \end{aligned}$$
(31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tafrishi, S.A., Svinin, M. & Yamamoto, M. Inverse dynamics of underactuated planar manipulators without inertial coupling singularities. Multibody Syst Dyn 52, 407–429 (2021). https://doi.org/10.1007/s11044-021-09788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-021-09788-8

Keywords

Navigation