Skip to main content

Advertisement

Log in

Robust optimal solution for a smart rigid–flexible system control during multimode operational mission via actuators in combination

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper is aimed at developing several control scenarios for vibration suppression of a flexible microsatellite as a multibody system with nonlinear fully coupled dynamics in different but interconnected in-orbit mission phases. The design approach is to exploit different actuators in a single and hybrid configuration with an optimal switching mechanism to achieve a desirable maneuvering performance by means of agility and accuracy. In this regard, a genetic algorithm (GA)-particle swarm optimization (PSO) based nonsingular terminal sliding mode control (GP-NSTSMC) and extended Lyapunov-based controller design (LD) are developed to cope with the limitations of bounded uncertainty and external disturbances. Great features of the GP-NSTSMC are its gains which are selected based on two major criteria, system energy and maneuver time, and for LD we consider the piezoelectric (PZT) and reaction wheel (RW) performance in the form of mechanical and electrical energies in the structure of the control algorithm. Despite the capabilities of these algorithms, they still excite high-frequency flexible modes. Accordingly, by applying feedback voltages to the PZTs, the extra vibration is actively damped, where the strain rate feedback (SRF) method is set to determine the control voltages. Furthermore, to satisfy one of the mission’s requirements, which is solar panels deployment, a classical Levenberg–Marquardt (CLM) technique for online mass property identification along with an effective fault detection scenario is employed. A comparative assessment of the proposed hybrid actuator/controllers is presented to clarify the technical aspects of this multimode scenario for further investigations and practical real-time space missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ambrosio, J.: Dynamics of structures undergoing gross motion and nonlinear deformations: a multibody approach. Comput. Struct. 59(6), 1001–1012 (1996)

    Article  MATH  Google Scholar 

  2. Li, H.-Q., Duan, L.-C., Liu, X.-F., Cai, G.-P.: Deployment and control of flexible solar array system considering joint friction. Multibody Syst. Dyn. 39(3), 249–265 (2017)

    Article  MathSciNet  Google Scholar 

  3. Azadi, M., Eghtesad, M., Fazelzadeh, S., Azadi, E.: Dynamics and control of a smart flexible satellite moving in an orbit. Multibody Syst. Dyn. 35(1), 1–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Huang, J., Zhu, W.: Nonlinear dynamics of a high-dimensional model of a rotating Euler–Bernoulli beam under the gravity load. J. Appl. Mech. 81(10), 101007 (2014)

    Article  Google Scholar 

  5. Ambrósio, J.A., Neto, M.A., Leal, R.P.: Optimization of a complex flexible multibody systems with composite materials. Multibody Syst. Dyn. 18(2), 117–144 (2007)

    Article  MATH  Google Scholar 

  6. Neto, M.A., Ambrosio, J.A., Leal, R.P.: Composite materials in flexible multibody systems. Comput. Methods Appl. Mech. Eng. 195(50–51), 6860–6873 (2006)

    Article  MATH  Google Scholar 

  7. Schwab, A.L., Meijaard, J.P.: Dynamics of flexible multibody systems with non-holonomic constraints: a finite element approach. Multibody Syst. Dyn. 10(1), 107–123 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kane, T., Ryan, R., Banerjeer, A.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 10(2), 139–151 (1987)

    Article  Google Scholar 

  9. Zhang, Y., Guan, X.: Active damping control of flexible appendages for spacecraft. Aerosp. Sci. Technol. 75, 237–244 (2018)

    Article  Google Scholar 

  10. Wei, J., Cao, D., Wang, L., Huang, H., Huang, W.: Dynamic modeling and simulation for flexible spacecraft with flexible jointed solar panels. Int. J. Mech. Sci. 130, 558–570 (2017)

    Article  Google Scholar 

  11. Liu, L., Cao, D.: Dynamic modeling for a flexible spacecraft with solar arrays composed of honeycomb panels and its proportional-derivative control with input shaper. J. Dyn. Syst. Meas. Control 138(8), 081008 (2016)

    Article  Google Scholar 

  12. Meehan, P., Asokanthan, S.: Control of chaotic instability in a dual-spin spacecraft with dissipation using energy methods. Multibody Syst. Dyn. 7(2), 171–188 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sun, T., Liang, D., Song, Y.: Singular-perturbation-based nonlinear hybrid control of redundant parallel robot. IEEE Trans. Ind. Electron. 65(4), 3326–3336 (2018)

    Article  Google Scholar 

  14. Zhang, Q., Mills, J.K., Cleghorn, W.L., Jin, J., Zhao, C.: Trajectory tracking and vibration suppression of a 3-PRR parallel manipulator with flexible links. Multibody Syst. Dyn. 33(1), 27–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y., Sheng, C., Hu, Q., Li, M., Guo, Z., Qi, R.: Dynamic analysis and control application of vibration isolation system with magnetic suspension on satellites. Aerosp. Sci. Technol. 75, 99–114 (2018)

    Article  Google Scholar 

  16. Zarafshan, P., Moosavian, S.A.A.: Fuzzy tuning control approach to perform cooperative object manipulation by a rigid–flexible multibody robot. Multibody Syst. Dyn. 40(3), 213–233 (2017)

    Article  MathSciNet  Google Scholar 

  17. Azimi, M., Shahravi, M.: Stabilization of a large flexible spacecraft using robust adaptive sliding hypersurface and finite element approach. Int. J. Dyn. Control 8, 644–655 (2020)

    Article  MathSciNet  Google Scholar 

  18. Hu, Q., Tan, X.: Dynamic near-optimal control allocation for spacecraft attitude control using a hybrid configuration of actuators. IEEE Trans. Aerosp. Electron. Syst. 56(2), 1430–1443 (2019)

    Article  Google Scholar 

  19. Xu, S., Cui, N., Fan, Y., Guan, Y.: Flexible satellite attitude maneuver via adaptive sliding mode control and active vibration suppression. AIAA J. 56(10), 4205–4212 (2018)

    Article  Google Scholar 

  20. Zaare, S., Soltanpour, M.R., Moattari, M.: Adaptive sliding mode control of flexible-joint robot manipulators in the presence of structured and unstructured uncertainties. Multibody Syst. Dyn. 47(4), 397–434 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, H., Ma, G., Lv, Y., Guo, Y.: Forecasting-based data-driven model-free adaptive sliding mode attitude control of combined spacecraft. Aerosp. Sci. Technol. 86, 364–374 (2019)

    Article  Google Scholar 

  22. Asar, M.F., Elawady, W.M., Sarhan, A.M.: ANFIS-based an adaptive continuous sliding-mode controller for robot manipulators in operational space. Multibody Syst. Dyn. 47(2), 95–115 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cao, L., Xiao, B., Golestani, M.: Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dyn. 100, 2505–2519 (2020)

    Article  Google Scholar 

  24. Xiong, J.-J., Zhang, G.-B.: Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Trans. 66, 233–240 (2017)

    Article  Google Scholar 

  25. Cao, L., Chen, X., Sheng, T.: Fault tolerant small satellite attitude control using adaptive non-singular terminal sliding mode. Adv. Space Res. 51(12), 2374–2393 (2013)

    Article  Google Scholar 

  26. Jing, C., Xu, H., Niu, X., Song, X.: Adaptive nonsingular terminal sliding mode control for attitude tracking of spacecraft with actuator faults. IEEE Access 7, 31485–31493 (2019)

    Article  Google Scholar 

  27. Zhang, R., Dong, L., Sun, C.: Adaptive nonsingular terminal sliding mode control design for near space hypersonic vehicles. IEEE/CAA J. Autom. Sin. 1(2), 155–161 (2014)

    Article  Google Scholar 

  28. Ba, D.X., Yeom, H., Bae, J.: A direct robust nonsingular terminal sliding mode controller based on an adaptive time-delay estimator for servomotor rigid robots. Mechatronics 59, 82–94 (2019)

    Article  Google Scholar 

  29. Wu, G.-Q., Song, S.-M.: Antisaturation attitude and orbit-coupled control for spacecraft final safe approach based on fast nonsingular terminal sliding mode. J. Aerosp. Eng. 32(2), 04019002 (2019)

    Article  Google Scholar 

  30. Zhang, L., Wei, C., Wu, R., Cui, N.: Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle. Aerosp. Sci. Technol. 82, 70–79 (2018)

    Article  Google Scholar 

  31. Han, Z., Zhang, K., Yang, T., Zhang, M.: Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode. IET Control Theory Appl. 10(16), 1991–1999 (2016)

    Article  MathSciNet  Google Scholar 

  32. Jung, J., Park, S.-Y., Eun, Y., Kim, S.-W., Park, C.: Hardware simulations of spacecraft attitude synchronization using Lyapunov-based controllers. Int. J. Aeronaut. Space Sci. 19(1), 120–138 (2018)

    Article  Google Scholar 

  33. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55(3), 531–534 (1992)

    Article  MathSciNet  Google Scholar 

  34. Neto, M.A., Ambrósio, J.A., Roseiro, L.M., Amaro, A., Vasques, C.: Active vibration control of spatial flexible multibody systems. Multibody Syst. Dyn. 30(1), 13–35 (2013)

    Article  MathSciNet  Google Scholar 

  35. Wang, J., Pi, Y., Hu, Y., Zhu, Z., Zeng, L.: Adaptive simultaneous motion and vibration control for a multi flexible-link mechanism with uncertain general harmonic disturbance. J. Sound Vib. 408, 60–72 (2017)

    Article  Google Scholar 

  36. Weldegiorgis, R., Krishna, P., Gangadharan, K.: Vibration control of smart cantilever beam using strain rate feedback. Proc. Mater. Sci. 5, 113–122 (2014)

    Article  Google Scholar 

  37. Meitzler, A., Tiersten, H., Warner, A., Berlincourt, D., Couqin, G., Welsh, F. III: IEEE standard on piezoelectricity. In: Society (1988)

    Google Scholar 

  38. Dubay, R., Hassan, M., Li, C., Charest, M.: Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator. ISA Trans. 53(5), 1609–1619 (2014)

    Article  Google Scholar 

  39. Hu, Q.: Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics. Nonlinear Dyn. 52(3), 227–248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. de Wit, C.C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer, Berlin (2012)

    MATH  Google Scholar 

  41. Kokotović, P., Khalil, H.K., O’reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  42. Siciliano, B., Book, W.J.: A singular perturbation approach to control of lightweight flexible manipulators. Int. J. Robot. Res. 7(4), 79–90 (1988)

    Article  Google Scholar 

  43. Feng, Y., Yu, X., Han, F.: On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49(6), 1715–1722 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Junkins, J.L., Rahman, Z., Bang, H.: Near-minimum-time control of distributed parameter systems – analytical and experimental results. J. Guid. Control Dyn. 14(2), 406–415 (1991)

    Article  Google Scholar 

  45. Azimi, M., Joubaneh, E.F.: Dynamic modeling and vibration control of a coupled rigid–flexible high-order structural system: a comparative study. Aerosp. Sci. Technol. 102, 105875 (2020)

    Article  Google Scholar 

  46. Gasbarri, P., Sabatini, M., Pisculli, A.: Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh. Acta Astronaut. 127, 141–159 (2016)

    Article  Google Scholar 

  47. Sharifi, G., Mirshams, M., Shahmohamadi Ousaloo, H.: Mass properties identification and automatic mass balancing system for satellite attitude dynamics simulator. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 233(3), 896–907 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Azimi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi, M., Moradi, S. Robust optimal solution for a smart rigid–flexible system control during multimode operational mission via actuators in combination. Multibody Syst Dyn 52, 313–337 (2021). https://doi.org/10.1007/s11044-021-09782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-021-09782-0

Keywords

Navigation