Skip to main content
Log in

A new model of the contact force for the collision between two solid bodies

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A collision between two bodies is a usual phenomenon in many engineering applications. The most important problem with the collision analysis is determining the hysteresis damping factor or the hysteresis damping ratio. The hysteresis damping ratio is related to the coefficient of restitution. In this paper, an explicit expression is determined for this relation. For this reason, a parametric expression is considered for the relation between the deformation and its velocity of the contact process. This expression consists of two unknown constants. Using the energy balance, a new explicit parametric expression between the hysteresis damping factor and the coefficient of restitution is derived. For determining the unknown constants, the root mean square (RMS) of the hysteresis damping ratio of this new expression with respect to the numerical model is minimized. This new model is completely suitable for the whole range of the coefficient of restitution. So, the new model can be used in the hard and soft impact problems. Finally, three numerical examples of two colliding bodies, the classic bouncing ball problem, the resilient impact damper, and a planar slider–crank mechanism, are presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

RMS:

Root of mean square

\(F\) :

Contact force

\(K\) :

Generalized stiffness parameter

\(\Delta\) :

Relative normal deformation

\(R_{1}\) and \(R_{2}\) :

Radii of spheres

\(\sigma _{1}\) and \(\sigma _{2}\) :

Material parameters

\(v_{1}\) and \(v_{2}\) :

Poisson’s ratios

\(E_{1}\) and \(E_{2}\) :

Young moduli

\(D\) :

Damping coefficient

\(C\) :

Hysteresis damping factor

\(N\) :

Exponent

\(\dot{\delta }\) :

Relative normal velocity of two contacting bodies

\(c_{r}\) :

Coefficient of restitution

\(x_{1}\) and \(x_{2}\) :

Displacements of the center of mass

\(\delta _{1}\) and \(\delta _{2}\) :

Deformations of two spheres

\(m_{1}\) and \(m_{2}\) :

Masses of spheres

\(\ddot{x}_{1}\) and \(\ddot{x}_{2}\) :

Acceleration of the centers of mass of two spheres

\(m\) :

Equivalent mass

\(\ddot{\delta }\) :

Relative normal acceleration of two contacting bodies

\(V_{1}^{-}\) and \(V_{2}^{-}\) :

Velocities of the two spheres at the initial instant of contact

\(V_{12}\) :

Common velocity of both spheres in the maximum deformation instant

\(\dot{\delta }^{-}\) and \(\dot{\delta }^{+}\) :

Impacting and the separating velocities

\(\Delta T_{\mathrm{com}}\) :

Change in the kinetic energy in the compression period

\(\Delta T_{\mathrm{res}}\) :

Change in the kinetic energy in the restitution period

\(\Delta T\) :

Total change in the kinetic energy in the contact process

\(\Delta W_{\mathrm{com}}\) :

Work done by the Hertz contact force in the compression period

\(\Delta W_{\mathrm{res}}\) :

Work done by the Hertz contact force in the restitution period

\(\Delta W\) :

Total work done by the Hertz contact force in the contact process

\(\delta _{\max } \) :

Maximum deformation

ln:

Natural logarithm

\(\Delta E_{\mathrm{com}}\) :

Energy loss due to the damping force in the compression period

\(\Delta E_{\mathrm{res}}\) :

Energy loss due to the damping force in the restitution period

\(\Delta E\) :

Total energy loss due to the damping force in the contact process

\(h_{r}\) :

Hysteresis damping ratio

\(H_{0}\) :

Initial height of bouncing ball

\(g\) :

Gravity acceleration

\(V_{0}\) :

Initial velocity of bouncing ball

References

  1. Varedi, S.M., Daniali, H.M., Dardel, M., Fathi, A.: Optimal dynamic design of a planar slider–crank mechanism with a joint clearance. Mech. Mach. Theory 86, 191–200 (2015). https://doi.org/10.1016/j.mechmachtheory.2014.12.008

    Article  Google Scholar 

  2. Erkaya, S.: Experimental investigation of flexible connection and clearance joint effects on the vibration responses of mechanisms. Mech. Mach. Theory 121, 515–529 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.11.014

    Article  Google Scholar 

  3. Marhefka, D.W., Orin, D.E.: A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 29(6), 566–572 (1999). https://doi.org/10.1109/3468.798060

    Article  Google Scholar 

  4. Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: Study of the friction-induced vibration and contact mechanics of artificial hip joints. Tribol. Int. 70, 1–10 (2014). https://doi.org/10.1016/j.triboint.2013.09.006

    Article  Google Scholar 

  5. Shabana, A.A., Zaazaa, K.E., Escalona, J.L., Sany, J.R.: Development of elastic force model for wheel/rail contact problems. J. Sound Vib. 269(1–2), 295–325 (2004). https://doi.org/10.1016/S0022-460X(03)00074-9

    Article  Google Scholar 

  6. Afsharfard, A.: Application of nonlinear magnetic vibro-impact vibration suppressor and energy harvester. Mech. Syst. Signal Process. 98, 371–381 (2018). https://doi.org/10.1016/j.ymssp.2017.05.010

    Article  Google Scholar 

  7. Goldsmith, W.: Impact: The Theory and Physical Behavior of Colliding Solids. Edward Arnold Ltd., London (1960)

    MATH  Google Scholar 

  8. Hunt, K.H., Crossley, F.R.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975). https://doi.org/10.1115/1.3423596

    Article  Google Scholar 

  9. Ristow, G.H.: Simulating granular flow with molecular dynamics. J. Phys. I France 2(5), 649–662 (1992). https://doi.org/10.1051/jp1:1992159

    Article  Google Scholar 

  10. Lee, J., Herrmann, H.J.: Angle of repose and angle of marginal stability: molecular dynamics of granular particles. J. Phys. A, Math. Gen. 26(2), 373–383 (1993). https://doi.org/10.1088/0305-4470/26/2/021

    Article  Google Scholar 

  11. Schäfer, J., Dippel, S., Wolf, D.E.: Force schemes in simulations of granular materials. J. Phys. I France 6(1), 5–20 (1996). https://doi.org/10.1051/jp1:1996129

    Article  Google Scholar 

  12. Bordbar, M.H., Hyppänen, T.: Modeling of binary collision between multisize viscoelastic spheres. J. Numer. Anal. Ind. Appl. Math. 2(3–4), 115–128 (2007)

    MATH  Google Scholar 

  13. Zhang, Y., Sharf, I.: Validation of nonlinear viscoelastic contact force models for low speed impact. J. Appl. Mech. 76(5), 051002 (2009). https://doi.org/10.1115/1.3112739

    Article  Google Scholar 

  14. Herbert, R.G., McWhannell, D.C.: Shape and frequency composition of pulses from an impact pair. J. Eng. Ind. 99(3), 513–518 (1977). https://doi.org/10.1115/1.3439270

    Article  Google Scholar 

  15. Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J.C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11(3), 209–233 (2004). https://doi.org/10.1023/B:MUBO.0000029392.21648.bc

    Article  MATH  Google Scholar 

  16. Zhang, Y., Sharf, I.: Compliant force modeling for impact analysis. In: Proc. The ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Salt Lake City, Utah, USA, Paper No. DETC2004-57220 (2004)

    Google Scholar 

  17. Lee, T.W., Wang, A.C.: On the dynamics of intermittent-motion mechanisms—Part 1: dynamic model and response. J. Mech. Transm. Autom. Des. 105(3), 534–540 (1983). https://doi.org/10.1115/1.3267392

    Article  Google Scholar 

  18. Kuwabara, G., Kono, K.: Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26(8), 1230–1233 (1987). https://doi.org/10.1143/JJAP.26.1230

    Article  Google Scholar 

  19. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990). https://doi.org/10.1115/1.2912617

    Article  Google Scholar 

  20. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992). https://doi.org/10.1016/0032-5910(92)88030-L

    Article  Google Scholar 

  21. Brilliantov, N.V., Spahn, F., Hertzsch, J.M., Pöschel, T.: Model for collisions in granular gases. Phys. Rev. E 53(5), 5382–5392 (1996). https://doi.org/10.1103/PhysRevE.53.5382

    Article  Google Scholar 

  22. Gharib, M., Hurmuzlu, Y.: A new contact force model for low coefficient of restitution impact. J. Appl. Mech. 79(6), 064506 (2012). https://doi.org/10.1115/1.4006494

    Article  Google Scholar 

  23. Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25(3), 357–375 (2011). https://doi.org/10.1007/s11044-010-9237-4

    Article  MATH  Google Scholar 

  24. Hu, S., Guo, X.: A dissipative contact force model for impact analysis in multibody dynamics. Multibody Syst. Dyn. 35(2), 131–151 (2015). https://doi.org/10.1007/s11044-015-9453-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Flores, P., Lankarani, H.M.: An overview on continuous contact force models for multibody dynamics. In: Proc. The ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2012, Chicago, IL, USA, August 12–15, 2012, Paper No. DETC2012-70393 (2012)

    Google Scholar 

  26. Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. Nonlinear Dyn. 8(2), 021012 (2013). https://doi.org/10.1115/1.4006202

    Article  Google Scholar 

  27. Alves, J., Peixinho, N., Silva, M.T., Flores, P., Lankarani, H.M.: A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech. Mach. Theory 85, 172–188 (2015). https://doi.org/10.1016/j.mechmachtheory.2014.11.020

    Article  Google Scholar 

  28. Flores, P., Lankarani, H.M.: Contact Force Models for Multibody Systems. Springer, Switzerland (2016)

    Book  Google Scholar 

  29. Skrinjar, P.L., Slavič, J., Boltežar, M.: A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 145, 171–187 (2018). https://doi.org/10.1016/j.ijmecsci.2018.07.010

    Article  Google Scholar 

  30. Xiang, D., Shen, Y., Wei, Y., You, M.: A comparative study of the dissipative contact force models for collision under external spring forces. J. Comput. Nonlinear Dyn. 13(10), 101009 (2018). https://doi.org/10.1115/1.4041031

    Article  Google Scholar 

  31. Johnson, K.L.: Contact Mechanics. Cambridge University Press, London (1985)

    Book  Google Scholar 

  32. Lankarani, H.M., Nikravesh, P.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  33. Big-Alabo, A.: Rigid body motions and local compliance response during impact of two deformable spheres. Mech. Eng. Res. 8(1), 1–15 (2018). https://doi.org/10.5539/mer.v8n1p1

    Article  Google Scholar 

  34. Meriam, J.L., Kraige, L.G., Bolton, J.N.: Engineering Mechanics: Dynamics, 8th edn. John Wiley & Sons, New York (2015)

    Google Scholar 

  35. Balachandran, B., Magreb, E.B.: Vibrations, 3rd edn. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  36. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012). https://doi.org/10.1016/j.mechmachtheory.2012.02.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anooshirvan Farshidianfar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaeifar, H., Farshidianfar, A. A new model of the contact force for the collision between two solid bodies. Multibody Syst Dyn 50, 233–257 (2020). https://doi.org/10.1007/s11044-020-09732-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09732-2

Keywords

Navigation