Skip to main content
Log in

Implementation of a non-Hertzian contact model for railway dynamic application

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The development of wheel–rail contact models is an active topic of railway research with the dual objective of improving the accuracy of multibody simulations and reducing its computational effort. This paper extends the online Hertzian contact model, proposed by Pombo et al. (Veh. Syst. Dyn. 45: 165–189, 2007) to propose a non-Hertzian contact model. The new methodology presented here includes the following steps: (i) search of the points of contact; (ii) identification of the undeformed distance function; (iii) evaluation of the contact patch; (iv) calculation of the normal and tangential contact forces; (v) application of the contact forces in the multibody vehicle model. Among several contact models available in the literature, this non-Hertzian contact approach uses the Kik–Piotrowski model for the normal contact force, while the tangential forces are obtained from the interpolation of the available Kalker Book of Tables for non-Hertzian (KBTNH) contact. With the purpose to demonstrate the proper implementation and selection of parameters that define this new model, several contact analysis and dynamic simulations are performed in which the wheel S1002 and the rail UIC50 are considered. First, the contact analyses that determine the contact condition of different wheel–rail interactions serve to assess the accuracy of the Hertzian and non-Hertzian models with respect to the software of reference CONTACT. Second, the Hertzian and non-Hertzian models are utilised to perform dynamic simulations of a wheelset, a bogie and a vehicle running in tangent and curved tracks. In short, this work provides, not only a complete description of the implementation of a non-Hertzian contact model in a multibody code, but also suggests for the proper selection of the parameters that promote better accuracy and optimal computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\((.)_{\mathrm{cp}}\) :

Subscript to identify the contact patch

\((.)_{w}\) :

Subscript to identify the wheelset \(w\)

\((.)_{\mathrm{r}}\) :

Subscript to identify the rail

\((.)^{\mathit{side}}\) :

Superscript to identify the left and right side

\(a\) :

Length of semi-axes of SDEC or elliptical contact patch in longitudinal direction

\(A\) :

Curvature of the contact point in the lateral direction

\(A_{\mathrm{cp}}\) :

Area of the contact patch

\(\mathbf{A}\) :

Transformation matrix

\(b\) :

Length of semi-axes of SDEC or elliptical contact patch in longitudinal direction

\(\mathbf{b}\) :

Binormal vector

\(B\) :

Curvature of the contact point in the longitudinal lateral

\(\mathbf{d}\) :

Distant vector

\(D\) :

Damping coefficient for the normal contact force

\(e\) :

Restitution coefficient

\(E\) :

Young modulus

\(f_{{r}}\) :

Ordinate of the profile that represents the rail cross section

\(f_{w}\) :

Ordinate of the profile that represents the wheelset \(w\) cross section

\(f_{{x}}\) :

Normalised longitudinal creep force

\(f_{{y}}\) :

Normalised lateral creep force

\(F_{{x}}\) :

Longitudinal creep force

\(F_{{y}}\) :

Lateral creep force

\(g\) :

Aspect ratio

\(g_{\mathrm{und}}\) :

Undeformed distance function

\(\mathbf{g}\) :

External generalised forces vector

\(G\) :

Shear Modulus

H:

Hertzian

\(H\) :

Distance between the left and right wheel profiles

\(K\) :

Contact stiffness

KBTNH:

Kalker Book of Tables for non-Hertzian

L:

Left side

\(m_{{z}}\) :

Normalised creep moment

\(M_{{z}}\) :

Spin creep moment

\(\mathbf{M}\) :

Mass matrix

\(n\) :

Hertz nonlinear exponent

\(\mathbf{n}\) :

Normal unit vector

NH:

non-Hertzian

\(N\) :

Normal force magnitude

PS:

Primary Suspension

\(P\) :

Potential point of contact in the rail

\(p_{0}\) :

Maximum normal pressure of the KP model

\(p_{\max}\) :

Maximum normal pressure

\(\mathbf{q}\) :

System generalised coordinates

\(Q\) :

Potential point of contact in the wheel

\(r\) :

Radial coordinate

\(\mathbf{r}\) :

Position vector

\(s_{\mathrm{r}}\) :

Arc-length coordinate of the rail surface

\(s_{w}\) :

Angular coordinate of the wheel surface

SS:

Secondary Suspension

SDEC:

Single Double Elliptical Contact

R:

Right side

\(\mathbf{v}\) :

Velocity vector

\(\mathbf{t}\) :

Tangential vector

\(u_{\mathrm{r}}\) :

Lateral coordinate of the rail surface

\(u_{w}\) :

Lateral coordinate of the wheel surface

\(x_{\mathrm{L}}\) :

Length of the strip

\(x,y,z\) :

Cartesian coordinates

\(y_{0}\) :

One dimension of the SDEC

\(\alpha \) :

Direction of the linear creepage

\(\gamma \) :

Tangent angle of the cross section

\(\boldsymbol{\gamma }\) :

Right-hand side of the acceleration constraint equations vector

\(\delta \) :

Penetration magnitude

\(\dot{\delta }^{\max } \) :

Maximum penetration velocity

\(\Delta F_{{x}}\) :

Deviation of the longitudinal creep force

\(\Delta F_{{y}}\) :

Deviation of the lateral creep force

\(\Delta M_{{z}}\) :

Deviation of the spin creep moment

\(\Delta r \) :

Step size for the radial coordinate

\(\Delta s\) :

Width of the strip

\(\Delta \theta \) :

Step size for the angular coordinate

\(\varepsilon \) :

Parameter that takes into account the existing deformation

\(\eta \) :

Normalised lateral creepage

\(\theta \) :

Angular coordinate

\(\kappa \) :

Curvature

\(\boldsymbol{\lambda }\) :

Lagrange multipliers vector

\(\mu \) :

Friction coefficient

\(\nu \) :

Magnitude of the linear creepages

\(\xi \) :

Normalised longitudinal creepage

\(\sigma \) :

Poisson ratio

\(\upsilon _{{x}}\) :

Longitudinal creepage

\(\upsilon _{{y}}\) :

Lateral creepage

\(\varphi \) :

Spin creepage

\(\boldsymbol{\Phi }_{\mathbf{q}}\) :

Jacobian matrix of the constraint equations

\(\chi \) :

Normalised spin creepage

\(\psi \) :

Shape factor of SDEC

\(\boldsymbol{\upomega}\) :

Angular velocity vector

References

  1. Pombo, J., Ambrósio, J., Silva, M.: A new wheel–rail contact model for railway dynamics. Veh. Syst. Dyn. 45, 165–189 (2007). https://doi.org/10.1080/00423110600996017

    Article  Google Scholar 

  2. Weidemann, C.: State-of-the-art railway vehicle design with multibody simulation. J. Mech. Syst. Transp. Logist. 3, 12–26 (2010). https://doi.org/10.1299/jmtl.3.12

    Article  Google Scholar 

  3. Polach, O., Böttcher, A., Vannucci, D., Sima, J., Schelle, H., Chollet, H., Götz, G., Garcia Prada, M., Nicklisch, D., Mazzola, L., Berg, M., Osman, M.: Validation of simulation models in the context of railway vehicle acceptance. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 229, 729–754 (2015). https://doi.org/10.1177/0954409714554275

    Article  Google Scholar 

  4. Magalhaes, H., Madeira, J.F.A., Ambrósio, J., Pombo, J.: Railway vehicle performance optimisation using virtual homologation. Veh. Syst. Dyn. 54, 1177–1207 (2016). https://doi.org/10.1080/00423114.2016.1196821

    Article  Google Scholar 

  5. Magalhaes, H., Ambrósio, J., Pombo, J.: Railway vehicle modelling for the vehicle–track interaction compatibility analysis. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 230, 251–267 (2016). https://doi.org/10.1177/1464419315608275

    Article  Google Scholar 

  6. Bogojević, N., Lučanin, V.: The proposal of validation metrics for the assessment of the quality of simulations of the dynamic behaviour of railway vehicles. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 230, 585–597 (2016). https://doi.org/10.1177/0954409714552700

    Article  Google Scholar 

  7. Tao, G., Ren, D., Wang, L., Wen, Z., Jin, X.: Online prediction model for wheel wear considering track flexibility. Multibody Syst. Dyn. 44, 313–334 (2018). https://doi.org/10.1007/s11044-018-09633-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Spangenberg, U., Frohling, R.D., Els, P.S.: Influence of wheel and rail profile shape on the initiation of rolling contact fatigue cracks at high axle loads. Veh. Syst. Dyn. 54, 638–652 (2016). https://doi.org/10.1080/00423114.2016.1150496

    Article  Google Scholar 

  9. Ignesti, M., Innocenti, A., Marini, L., Meli, E., Rindi, A.: Development of a model for the simultaneous analysis of wheel and rail wear in railway systems. Multibody Syst. Dyn. 31, 191–240 (2014). https://doi.org/10.1016/j.wear.2014.10.008

    Article  Google Scholar 

  10. Pombo, J., Ambrósio, J., Pereira, M., Lewis, R., Dwyer-Joyce, R., Ariaudo, C., Kuka, N.: Development of a wear prediction tool for steel railway wheels using three alternative wear functions. Wear 271, 238–245 (2011). https://doi.org/10.1016/j.wear.2010.10.072

    Article  MATH  Google Scholar 

  11. Pombo, J., Ambrósio, J., Pereira, M., Lewis, R., Dwyer-Joyce, R., Ariaudo, C., Kuka, N.: A study on wear evaluation of railway wheels based on multibody dynamics and wear computation. Multibody Syst. Dyn. 24, 347–366 (2010). https://doi.org/10.1007/s11044-010-9217-8

    Article  MATH  Google Scholar 

  12. Six, K., Meierhofer, A., Trummer, G., Marte, C., Müller, G., Luber, B., Dietmaier, P., Rosenberger, M.: Classification and consideration of plasticity phenomena in wheel–rail contact modelling. Int. J. Railw. Technol. 5, 55–77 (2016). https://doi.org/10.4203/ijrt.5.3.3

    Article  Google Scholar 

  13. Meymand, S.Z., Keylin, A., Ahmadian, M.: A survey of wheel–rail contact models for rail vehicles. Veh. Syst. Dyn. 54, 386–428 (2016). https://doi.org/10.1080/00423114.2015.1137956

    Article  Google Scholar 

  14. Knothe, K., Böhm, F.: History of stability of railway and road vehicles. Veh. Syst. Dyn. 31, 283–323 (2010). https://doi.org/10.1076/vesd.31.5.283.8362

    Article  Google Scholar 

  15. Enblom, R.: Deterioration mechanisms in the wheel–rail interface with focus on wear prediction: a literature review. Veh. Syst. Dyn. 47, 661–700 (2009). https://doi.org/10.1080/00423110802331559

    Article  Google Scholar 

  16. Sugiyama, H., Araki, K., Suda, Y.: On-line and off-line wheel/rail contact algorithm in the analysis of multibody railroad vehicle systems. J. Mech. Sci. Technol. 23, 991–996 (2009). https://doi.org/10.1007/s12206-009-0327-2

    Article  Google Scholar 

  17. Piotrowski, J., Chollet, H.: Wheel–rail contact models for vehicle system dynamics including multi-point contact. Veh. Syst. Dyn. 43, 455–483 (2005). https://doi.org/10.1080/00423110500141144

    Article  Google Scholar 

  18. Elkins, J.A.: Prediction of wheel/rail interaction: the state-of-the-art. Veh. Syst. Dyn. 20, 1–27 (1992). https://doi.org/10.1080/00423119208969385

    Article  Google Scholar 

  19. Alonso, A., Guiral, A., Giménez, J.G.: Wheel rail contact: theoretical and experimental analysis. Int. J. Railw. Technol. 2, 15–32 (2013). https://doi.org/10.4203/ijrt.2.4.2

    Article  Google Scholar 

  20. Piotrowski, J., Liu, B., Bruni, S.: The Kalker book of tables for non-Hertzian contact of wheel and rail. Veh. Syst. Dyn. 55, 875–901 (2017). https://doi.org/10.1080/00423114.2017.1291980

    Article  Google Scholar 

  21. Piotrowski, J., Bruni, S., Liu, B., Di Gialleonardo, E.: A fast method for determination of creep forces in non-Hertzian contact of wheel and rail based on a book of tables. Multibody Syst. Dyn. 45, 169–184 (2019). https://doi.org/10.1007/s11044-018-09635-3

    Article  Google Scholar 

  22. Sichani, M.S., Enblom, R., Berg, M.: Non-elliptic wheel–rail contact modelling in vehicle dynamics simulation. Int. J. Railw. Technol. 3, 77–96 (2014). https://doi.org/10.4203/ijrt.3.3.5

    Article  Google Scholar 

  23. Sichani, Sh.M., Enblom, R., Berg, M.: A novel method to model wheel–rail normal contact in vehicle dynamics simulation. Veh. Syst. Dyn. 52, 1752–1764 (2014). https://doi.org/10.1080/00423114.2014.961932

    Article  Google Scholar 

  24. Sun, Y., Zhai, W., Guo, Y.: A robust non-Hertzian contact method for wheel–rail normal contact analysis. Veh. Syst. Dyn. 56, 1899–1921 (2018). https://doi.org/10.1080/00423114.2018.1439587

    Article  Google Scholar 

  25. Liu, B., Bruni, S., Vollebregt, E.: A non-Hertzian method for solving wheel–rail normal contact problem taking into account the effect of yaw. Veh. Syst. Dyn. 54, 1226–1246 (2016). https://doi.org/10.1080/00423114.2016.1196823

    Article  Google Scholar 

  26. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice–Hall, Englewood Cliffs (1988)

    Google Scholar 

  27. Haug, E.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  28. Pombo, J., Ambrósio, J.: Application of a wheel–rail contact model to railway dynamics in small radius curved tracks. Multibody Syst. Dyn. 19, 91–114 (2008). https://doi.org/10.1007/s11044-007-9094-y

    Article  MATH  Google Scholar 

  29. Shabana, A.A., Zaazaa, K.E., Escalona, J.L., Sany, J.R.: Development of elastic force model for wheel/rail contact problems. J. Sound Vib. 269, 295–325 (2004). https://doi.org/10.1016/S0022-460X(03)00074-9

    Article  Google Scholar 

  30. Sugiyama, H., Sekiguchi, T., Matsumura, R., Yamashita, S., Suda, Y.: Wheel/rail contact dynamics in turnout negotiations with combined nodal and non-conformal contact approach. Multibody Syst. Dyn. 27, 55–74 (2012). https://doi.org/10.1007/s11044-010-9215-x

    Article  MathSciNet  MATH  Google Scholar 

  31. Meli, E., Ridolfi, A.: An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions. Multibody Syst. Dyn. 33, 285–313 (2013). https://doi.org/10.1007/s11044-013-9405-4

    Article  MathSciNet  Google Scholar 

  32. Malvezzi, M., Meli, E., Falomi, S., Rindi, A.: Determination of wheel–rail contact points with semianalytic methods. Multibody Syst. Dyn. 20, 327–358 (2008). https://doi.org/10.1007/s11044-008-9123-5

    Article  MATH  Google Scholar 

  33. Zaazaa, K.E., Schwab, A.L.: Review of Joost Kalker’s wheel–rail contact theories and their implementation in multibody codes. In: Proceedings of the ASME 2009 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, pp. 1889–1990 (2009)

    Google Scholar 

  34. Marquis, B., Pascal, J.P.: Report on a railway benchmark simulating a single wheelset without friction impacting a rigid track. Veh. Syst. Dyn. 46, 93–116 (2008). https://doi.org/10.1080/00423110701506905

    Article  Google Scholar 

  35. Shackleton, P., Iwnicki, S.: Comparison of wheel–rail contact codes for railway vehicle simulation: an introduction to the Manchester Contact Benchmark and initial results. Veh. Syst. Dyn. 46, 129–149 (2008). https://doi.org/10.1080/00423110701790749

    Article  Google Scholar 

  36. Bruni, S., Vinolas, J., Berg, M., Polach, O., Stichel, S.: Modelling of suspension components in a rail vehicle dynamics context. Veh. Syst. Dyn. 49, 1021–1072 (2011). https://doi.org/10.1080/00423114.2011.586430

    Article  Google Scholar 

  37. Eickhoff, B.M., Evans, J.R., Minnis, A.J.: A review of modelling methods for railway vehicle suspension components. Veh. Syst. Dyn. 24, 469–496 (1995). https://doi.org/10.1080/00423119508969105

    Article  Google Scholar 

  38. Alfi, S., Bruni, S., Mazzola, L.: Impact of suspension component modelling on the accuracy of rail vehicle dynamics simulation. In: Proceedings of the 11th Mini Conference on Vehicle System Dynamics, Identification and Anomalies, Budapest, Hungary (2008)

    Google Scholar 

  39. Pombo, J., Ambrósio, J.: An alternative method to include track irregularities in railway vehicle dynamic analyses. Nonlinear Dyn. 68, 161–176 (2012). https://doi.org/10.1007/s11071-011-0212-2

    Article  Google Scholar 

  40. Ambrósio, J., Antunes, P., Pombo, J.J., Pombo, J.J.: On the requirements of interpolating polynomials for path motion constraints. Mech. Mach. Sci. 26, 179–197 (2015). https://doi.org/10.1007/978-3-319-10723-3_19

    Article  Google Scholar 

  41. Bezin, Y., Funfschilling, C., Kraft, S., Mazzola, L.: Virtual testing environment tools for railway vehicle certification. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 229, 755–769 (2015). https://doi.org/10.1177/0954409715587596

    Article  Google Scholar 

  42. Antunes, P., Magalhaes, H., Ambrosio, J., Pombo, J., Costa, J.: A co-simulation approach to the rail-wheel contact with flexible railways. Multibody Syst. Dyn. 45, 245–272 (2019). https://doi.org/10.1007/s11044-018-09646-0

    Article  MathSciNet  Google Scholar 

  43. Wu, Q., Sun, Y., Spiryagin, M., Cole, C.: Parallel co-simulation method for railway vehicle–track dynamics. J. Comput. Nonlinear Dyn. 13, 041004 (2018). https://doi.org/10.1115/1.4039310

    Article  Google Scholar 

  44. Costa, J., Antunes, P., Magalhaes, H., Ambrósio, J., Pombo, J.: Development of flexible track models for railway vehicle dynamics applications. In: Proc. Third Int. Conf. Railw. Technol. Res. Dev. Maintenance, vol. 110 (2016). https://doi.org/10.4203/ccp.110.98

    Chapter  Google Scholar 

  45. Di Gialleonardo, E., Braghin, F., Bruni, S.: The influence of track modelling options on the simulation of rail vehicle dynamics. J. Sound Vib. 331, 4246–4258 (2012). https://doi.org/10.1016/j.jsv.2012.04.024

    Article  Google Scholar 

  46. Shabana, A.A., Tobaa, M., Sugiyama, H., Zaazaa, K.E.: On the computer formulations of the wheel/rail contact problem. Nonlinear Dyn. 40, 169–193 (2005). https://doi.org/10.1007/s11071-005-5200-y

    Article  MATH  Google Scholar 

  47. Sugiyama, H., Suda, Y.: On the contact search algorithms for wheel/rail contact problems. J. Comput. Nonlinear Dyn. 4, 41001 (2009). https://doi.org/10.1115/1.3187211

    Article  Google Scholar 

  48. Escalona, J.L., Aceituno, J.F.: Multibody simulation of railway vehicles with contact lookup tables. Int. J. Mech. Sci. 155, 571–582 (2019). https://doi.org/10.1016/j.ijmecsci.2018.01.020

    Article  Google Scholar 

  49. Matsumura, R., Sugiyama, H., Suda, Y.: Analysis of vehicle/turnout interactions of railroad vehicles using multiple contact tables. J. Syst. Des. Dyn. 5, 450–460 (2011). https://doi.org/10.1299/jsdd.5.450

    Article  Google Scholar 

  50. Falomi, S., Malvezzi, M., Meli, E.: Multibody modeling of railway vehicles: innovative algorithms for the detection of wheel–rail contact points. Wear 271, 453–461 (2011). https://doi.org/10.1016/j.wear.2010.10.039

    Article  Google Scholar 

  51. Bozzone, M., Pennestrì, E., Salvini, P.: A lookup table-based method for wheel–rail contact analysis. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 225, 127–138 (2011). https://doi.org/10.1177/2041306810394721

    Article  MATH  Google Scholar 

  52. Bozzone, M., Pennestrì, E., Salvini, P.: Dynamic analysis of a bogie for hunting detection through a simplified wheel–rail contact model. Multibody Syst. Dyn. 25, 429–460 (2011). https://doi.org/10.1007/s11044-010-9233-8

    Article  MATH  Google Scholar 

  53. Pascal, J.P., Jourdan, F.: The “rigid-multi-Hertzian method” as applied to conformal contacts. In: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C, vol. 5, pp. 1811–1825. ASME, New York (2007)

    Google Scholar 

  54. Blanco-Lorenzo, J., Santamaria, J., Vadillo, E.G., Correa, N.: On the influence of conformity on wheel–rail rolling contact mechanics. Tribol. Int. 103, 647–667 (2016). https://doi.org/10.1016/j.triboint.2016.07.017

    Article  Google Scholar 

  55. Vollebregt, E., Segal, G.: Solving conformal wheel–rail rolling contact problems. Veh. Syst. Dyn. 52, 455–468 (2014). https://doi.org/10.1080/00423114.2014.906634

    Article  Google Scholar 

  56. Vollebregt, E.A.H.: Conformal contact: corrections and new results. Veh. Syst. Dyn. 56, 1622–1632 (2018). https://doi.org/10.1080/00423114.2018.1424917

    Article  Google Scholar 

  57. Marques, F., Magalhaes, H., Pombo, J., Flores, P., Ambrosio, J.: Development of a new wheel–rail contact model for multibody simulations. In: Proceedings of the Fourth International Conference on Railway Technology: Research, Development and Maintenance, Sitges, Spain (2018)

    Google Scholar 

  58. Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic, Dordrecht (1990)

    Book  Google Scholar 

  59. Piotrowski, J., Kik, W.: A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Veh. Syst. Dyn. 46, 27–48 (2008). https://doi.org/10.1080/00423110701586444

    Article  Google Scholar 

  60. Ayasse, J.B., Chollet, H.: Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh. Syst. Dyn. 43, 161–172 (2005). https://doi.org/10.1080/00423110412331327193

    Article  Google Scholar 

  61. Quost, X., Sebes, M., Eddhahak, A., Ayasse, J., Chollet, H., Gautier, P., Thouverez, F.: Assessment of a semi-Hertzian method for determination of wheel–rail contact patch. Veh. Syst. Dyn. 44, 789–814 (2006). https://doi.org/10.1080/00423110600677948

    Article  Google Scholar 

  62. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  63. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. AMSE J. Mech. Des. 112, 369–376 (1990)

    Article  Google Scholar 

  64. Vollebregt, E.A.H., Iwnicki, S.D., Xie, G., Shackleton, P.: Assessing the accuracy of different simplified frictional rolling contact algorithms. Veh. Syst. Dyn. 50, 1–17 (2012). https://doi.org/10.1080/00423114.2011.552618

    Article  Google Scholar 

  65. Kalker, J.J.: On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction (1967)

    Google Scholar 

  66. Johnson, K.L., Vermeulen, P.J.: Contact of non-spherical bodies transmitting tangential forces. J. Appl. Mech. 31, 338–340 (1964). https://doi.org/10.1115/1.3629610

    Article  MATH  Google Scholar 

  67. Shen, Z.Y., Hedrick, J.K., Elkins, J.A.: A comparison of alternative creep force models for rail vehicle dynamic analysis. Veh. Syst. Dyn. 12, 79–83 (1983). https://doi.org/10.1080/00423118308968725

    Article  Google Scholar 

  68. Kalker, J.J.: A fast algorithm for the simplified theory of rolling-contact. Veh. Syst. Dyn. 11, 1–13 (1982). https://doi.org/10.1080/00423118208968684

    Article  Google Scholar 

  69. Polach, O.: A fast wheel–rail forces calculation computer code. Veh. Syst. Dyn. 33, 728–739 (1999). https://doi.org/10.1080/00423114.2013.826370

    Article  Google Scholar 

  70. Kalker, J.J.: Book of Tables for the Hertzian Creep-Force Law. Delft University of Technology, Delft (1996)

    Google Scholar 

  71. Sichani, Sh.M., Enblom, R., Berg, M.: An alternative to FASTSIM for tangential solution of the wheel–rail contact. Veh. Syst. Dyn. 54, 748–764 (2016). https://doi.org/10.1080/00423114.2016.1156135

    Article  Google Scholar 

  72. Marques, F., Magalhaes, H., Liu, B., Pombo, J., Flores, P., Ambrósio, J., Piotrowski, J., Bruni, S.: On the generation of an enhanced lookup table for wheel–rail contact models. In: The 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Delft, The Netherlands (2018)

    Google Scholar 

  73. Vollebregt, E.A.H.: Comments on ‘The Kalker book of tables for non-Hertzian contact of wheel and rail’. Veh. Syst. Dyn. 56, 1451–1469 (2018). https://doi.org/10.1080/00423114.2017.1421767

    Article  Google Scholar 

  74. Piotrowski, J., Bruni, S., Liu, B.: Reply to comments on ‘The Kalker book of tables for non-Hertzian contact of wheel and rail’ by E.A.H. Vollebregt. Veh. Syst. Dyn. 56, 1460–1469 (2018). https://doi.org/10.1080/00423114.2018.1437274

    Article  Google Scholar 

  75. Magalhaes, H., Ambrósio, J., Pombo, J.: Simulation of a railway vehicle running in a mountainous track at a prescribed speed. In: Proc. Third Int. Conf. Railw. Technol. Res. Dev. Maintenance (2016). https://doi.org/10.4203/ccp.110.100

    Chapter  Google Scholar 

  76. Magalhaes, H., Pombo, J., Ambrosio, J., Madeira, J.F.A.: Rail vehicle design optimization for operation in a mountainous railway track. Innov. Infrastruct. Solut. 2, 1–6 (2017). https://doi.org/10.1007/s41062-017-0088-1

    Article  Google Scholar 

  77. Ambrósio, J., Pombo, J., Antunes, P., Pereira, M.: PantoCat statement of method. Veh. Syst. Dyn. 53, 314–328 (2015). https://doi.org/10.1080/00423114.2014.969283

    Article  Google Scholar 

  78. Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst. Dyn. 42, 317–345 (2018). https://doi.org/10.1007/s11044-018-9613-z

    Article  MathSciNet  MATH  Google Scholar 

  79. Goldsmith, W.: Impact—the Theory and Physical Behaviour of Colliding Solids. Edward Arnold LTD, London (1960)

    MATH  Google Scholar 

  80. Hunt, K., Crossley, F.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 7, 440–445 (1975)

    Article  Google Scholar 

  81. Pombo, J., Ambrósio, J.: A computational efficient general wheel–rail contact detection method. J. Mech. Sci. Technol., Sep. Vol. KSME Int. J. 19, 411–421 (2005).

    Google Scholar 

  82. Vollebregt, E.: User Guide for CONTACT, Version v17.1 (2017)

Download references

Acknowledgements

The first and second authors express their gratitude to the Portuguese Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia) through the PhD grants SFRH/BD/96695/2013 and PD/BD/114154/2016, respectively. This work was supported by FCT, through IDMEC, under LAETA, project UID/EMS/50022/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Magalhães.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magalhães, H., Marques, F., Liu, B. et al. Implementation of a non-Hertzian contact model for railway dynamic application. Multibody Syst Dyn 48, 41–78 (2020). https://doi.org/10.1007/s11044-019-09688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09688-y

Keywords

Navigation