Skip to main content
Log in

Dynamic computation for rigid–flexible multibody systems with hybrid uncertainty of randomness and interval

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Considering the unavoidable uncertainty of material properties, geometry, and external loads existing in rigid–flexible multibody systems, a new hybrid uncertain computational method is proposed. Two evaluation indexes, namely interval mean and interval error bar, are presented to quantify the system response. The dynamic model of a rigid–flexible multibody system is built by using the absolute node coordinate formula (ANCF). The geometry size and external loads of rigid components are considered as interval variables, while the Young’s modulus and Poisson’s ratio of flexible components are expressed by a random field. The continuous random field is discretized to Gaussian random variables by using the expansion optimal linear estimation (EOLE) method. This paper proposes an orthogonal series expansion method, termed as improved Polynomial-Chaos-Chebyshev-Interval (PCCI) method, which solves the random and interval uncertainty under one integral framework. The improved PCCI method has some sampling points located on the bounds of interval variables, which lead to a higher accuracy in estimating the bounds of multibody systems’ response compared to the PCCI method. A rigid–flexible slider–crank mechanism is used as a numerical example, which demonstrates that the improved PCCI method has a higher accuracy than the PCCI method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Arnold, M., Bruls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beer, M., Ferson, S., Kreinovich, V.: Imprecise probabilities in engineering analyses. Mech. Syst. Signal Process. 37(1–2), 4–29 (2013). https://doi.org/10.1016/j.ymssp.2013.01.024

    Article  Google Scholar 

  3. Betz, W., Papaioannou, I., Straub, D.: Numerical methods for the discretization of random fields by means of the Karhunen–Loève expansion. Comput. Methods Appl. Mech. Eng. 271, 109–129 (2014). https://doi.org/10.1016/j.cma.2013.12.010

    Article  MATH  Google Scholar 

  4. Do, D.M., Gao, W., Song, C.: Stochastic finite element analysis of structures in the presence of multiple imprecise random field parameters. Comput. Methods Appl. Mech. Eng. 300, 657–688 (2016). https://doi.org/10.1016/j.cma.2015.11.032

    Article  MathSciNet  MATH  Google Scholar 

  5. Du, X., Venigella, P.K., Liu, D.: Robust mechanism synthesis with random and interval variables. Mech. Mach. Theory 44(7), 1321–1337 (2009). https://doi.org/10.1016/j.mechmachtheory.2008.10.003

    Article  MATH  Google Scholar 

  6. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)

    Book  MATH  Google Scholar 

  7. Gao, W., Song, C., Tin-Loi, F.: Probabilistic interval analysis for structures with uncertainty. Struct. Saf. 32(3), 191–199 (2010)

    Article  Google Scholar 

  8. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20(1), 1–28 (2008). https://doi.org/10.1007/s11044-008-9103-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45(1–2), 109–130 (2006)

    Article  MATH  Google Scholar 

  10. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(4), 359–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: a Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  12. Isukapalli, S.S.: Uncertainty Analysis of Transport-Transformation Models. State University of New Jersey, New Brunswick (1999)

    Google Scholar 

  13. Jiang, C., Zheng, J., Han, X.: Probability-interval hybrid uncertainty analysis for structures with both aleatory and epistemic uncertainties: a review. Struct. Multidiscip. Optim. (2017). https://doi.org/10.1007/s00158-017-1864-4

    Google Scholar 

  14. Kang, Z., Luo, Y.: Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput. Methods Appl. Mech. Eng. 198(41–44), 3228–3238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, C.C., Der Kiureghian, A.: Optimal discretization of random field. J. Eng. Mech. 119, 1136–1154 (1993)

    Article  Google Scholar 

  16. Sandu, C., Sandu, A., Blanchard, E.D.: Polynomial chaos-based parameter estimation methods applied to a vehicle system. J. Multi-Body Dyn. 224(1), 59–81 (2010). https://doi.org/10.1243/14644193jmbd204

    Google Scholar 

  17. Sarkar, A., Ghanem, R.: Mid-frequency structural dynamics with parameter uncertainty. Comput. Methods Appl. Mech. Eng. 191, 5499–5513 (2002)

    Article  MATH  Google Scholar 

  18. Shabana, A.A.: An Absolute Nodal Coordinates Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies. University of Illinois, Chicago (1997)

    Google Scholar 

  19. Shabana, A.A.: Definition of the slopes and absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997)

    Article  MATH  Google Scholar 

  20. Shabana, A.A.: Flexible multi-body dynamics review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  22. Shabana, A.A.: ANCF reference node for multibody system analysis. J. Multi-Body Dyn. 229(1), 109–112 (2014). https://doi.org/10.1177/1464419314546342

    Google Scholar 

  23. Sudret, B., Der Kiureghian, A.: Stochastic Finite Element Methods and Reliability a State-of-the-Art Report. University of Calnifornia, Berkeley (2000)

    Google Scholar 

  24. Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(2), 021009 (2009). https://doi.org/10.1115/1.3079783

    Article  Google Scholar 

  25. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2010). https://doi.org/10.1007/s11071-010-9843-y

    MATH  Google Scholar 

  26. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011). https://doi.org/10.1007/s11071-010-9843-y

    Article  MATH  Google Scholar 

  27. Tian, Q., Xiao, Q., Sun, Y., Hu, H., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2014). https://doi.org/10.1007/s11044-014-9420-0

    Article  MathSciNet  Google Scholar 

  28. Wang, Z., Tian, Q., Hu, H.: Dynamics of spatial rigid–flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84(2), 527–548 (2016). https://doi.org/10.1007/s11071-015-2504-4

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Z., Tian, Q., Hu, H.: Dynamics of flexible multibody systems with hybrid uncertain parameters. Mech. Mach. Theory 121, 128–147 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.09.024

    Article  Google Scholar 

  30. Wu, J., Luo, Z., Zhang, Y., Zhang, N., Chen, L.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95(7), 608–630 (2013). https://doi.org/10.1002/nme.4525

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, J., Luo, Z., Zhang, N., Zhang, Y.: A new uncertain analysis method and its application in vehicle dynamics. Mech. Syst. Signal Process. 50–51, 659–675 (2015). https://doi.org/10.1016/j.ymssp.2014.05.036

    Article  Google Scholar 

  32. Wu, D., Gao, W., Song, C., Tangaramvong, S.: Probabilistic interval stability assessment for structures with mixed uncertainty. Struct. Saf. 58, 105–118 (2016). https://doi.org/10.1016/j.strusafe.2015.09.003

    Article  Google Scholar 

  33. Wu, J., Luo, Z., Zhang, N., Zhang, Y.: Dynamic computation of flexible multibody system with uncertain material properties. Nonlinear Dyn. 85(2), 1231–1254 (2016). https://doi.org/10.1007/s11071-016-2757-6

    Article  MATH  Google Scholar 

  34. Wu, J., Luo, Z., Li, H., Zhang, N.: Level-set topology optimization for mechanical metamaterials under hybrid uncertainties. Comput. Methods Appl. Mech. Eng. 319, 414–441 (2017). https://doi.org/10.1016/j.cma.2017.03.002

    Article  MathSciNet  Google Scholar 

  35. Wu, J., Luo, Z., Li, H., Zhang, N.: A new hybrid uncertainty optimization method for structures using orthogonal series expansion. Appl. Math. Model. 45, 474–490 (2017). https://doi.org/10.1016/j.apm.2017.01.006

    Article  MathSciNet  Google Scholar 

  36. Wu, J., Luo, Z., Zhang, N., Zhang, Y., Walker, P.D.: Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties. Mech. Syst. Signal Process. 85, 487–511 (2017). https://doi.org/10.1016/j.ymssp.2016.08.040

    Article  Google Scholar 

  37. Xia, B., Yu, D., Liu, J.: Change-of-variable interval stochastic perturbation method for hybrid uncertain structural-acoustic systems with random and interval variables. J. Fluids Struct. 50, 461–478 (2014)

    Article  Google Scholar 

  38. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191, 4927–4948 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003). https://doi.org/10.1016/s0021-9991(03)00092-5

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, J., Ellingwood, B.: Orthogonal series expansion of random fields in reliability analysis. J. Eng. Mech. 120, 2660–2677 (1994)

    Article  Google Scholar 

  41. Zhang, Y., Tian, Q., Chen, L., Yang, J.: Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods. Multibody Syst. Dyn. 21(3), 281–303 (2008). https://doi.org/10.1007/s11044-008-9139-x

    Article  MATH  Google Scholar 

  42. Zhou, B., Zi, B., Qian, S.: Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty. Nonlinear Dyn. 90, 2599–2626 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Natural-Science-Foundation of China (11502083) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglai Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Luo, L., Zhu, B. et al. Dynamic computation for rigid–flexible multibody systems with hybrid uncertainty of randomness and interval. Multibody Syst Dyn 47, 43–64 (2019). https://doi.org/10.1007/s11044-019-09677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09677-1

Keywords

Navigation