Skip to main content
Log in

Geometrically exact beam equations in the adaptive DCA framework

Part 1: Static example

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This work examines the suitability of two popular methods of modeling bodies that undergo large deformation for use in the adaptive divide-and-conquer framework. In this framework, the method used to form and solve the equations-of-motion must handle a mixed set of bodies using different formulations, such as rigid-bodies that use a Newton–Euler formulation or flexible-bodies that use a floating frame of reference. Importantly, the method must treat all bodies indiscriminately of underlying formulation since the goal is to have adaptive changes in body definition, e.g., various rigid-bodies to a highly-flexible body. This work shows that the absolute nodal coordinate formulation is not immediately suitable for this purpose and derives the geometrically exact beam formulation equations that are compatible with these adaptive changes in body definition.

An example problem that demonstrates the accuracy of this work is presented for the static case since the solution is known analytically and can be used for comparison. This work lays the foundation for adaptive changes in body definition because the DCA can now deal with bodies that are rigid, flexible, and highly-flexible, indiscriminately. Furthermore, using the DCA to solve the equations-of-motion for systems of mixed body types, some of which undergo large deformations, does not require the rigid or FFR body to be discretized, as would be necessary with some software packages using finite element method type approach. This greatly reduces the number of degrees-of-freedom and therefore the computational effort required to simulate such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bauchau, O.A.: Flexible Multibody Dynamics. Solid Mechanics and Its Applications, vol. 176. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0335-3

    Book  MATH  Google Scholar 

  2. Bauchau, O.A., Epple, A., Heo, S.: Interpolation of finite rotations in flexible multi-body dynamics simulations. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 222(4), 353–366 (2008). https://doi.org/10.1243/14644193JMBD155

    Article  Google Scholar 

  3. Bauchau, O.A., Han, S.: Interpolation of rotation and motion. Multibody Syst. Dyn. 31(3), 339–370 (2014). https://doi.org/10.1007/s11044-013-9365-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K.: Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody Syst. Dyn. 32(1), 67–85 (2014). https://doi.org/10.1007/s11044-013-9374-7

    Article  MathSciNet  Google Scholar 

  5. Bauchau, O.A., Trainelli, L.: The vectorial parameterization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhalerao, K.D., Anderson, K.S., Trinkle, J.C.: A recursive hybrid time-stepping scheme for intermittent contact in multi-rigid-body dynamics. J. Comput. Nonlinear Dyn. 4(4), 041,010 (2009). https://doi.org/10.1115/1.3192132

    Article  Google Scholar 

  7. Bhalerao, K.D., Crean, C., Anderson, K.S.: Hybrid complementarity formulations for robotics applications. Z. Angew. Math. Mech. 91(5), 386–399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhalerao, K.D., Poursina, M., Anderson, K.S.: An efficient direct differentiation approach for sensitivity analysis of flexible multibody systems. Multibody Syst. Dyn. 23(2), 121–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bosson, M., Grudinin, S., Redon, S.: Block-adaptive quantum mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry. J. Comput. Chem. 34(6), 492–504 (2013). https://doi.org/10.1002/jcc.23157

    Article  Google Scholar 

  10. Crisfield, M.A., Jelenic, G.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. A, Math. Phys. Eng. Sci. 455(1983), 1125–1147 (1999). https://doi.org/10.1098/rspa.1999.0352

    Article  MathSciNet  MATH  Google Scholar 

  11. Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel \(\mathrm{O}(\log(n))\) calculation of rigid-body dynamics. Part 1: Basic algorithm. Int. J. Robot. Res. 18(9), 867–875 (1999)

    Article  Google Scholar 

  12. Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel \(\mathrm{O}(\log (n))\) calculation of rigid-body dynamics. Part 2: Trees, loops, and accuracy. Int. J. Robot. Res. 18(9), 876–892 (1999)

    Article  Google Scholar 

  13. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Civil and Mechanical Engineering Series. Dover, Mineola (2000)

    MATH  Google Scholar 

  14. Jelenić, G., Crisfield, M.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171(1–2), 141–171 (1999). https://doi.org/10.1016/S0045-7825(98)00249-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Jourdain, P.E.B.: Note on an analogue of Gauss principle of least constraint. Q. J. Pure Appl. Math. 40(1909), 153–157 (1909)

    MATH  Google Scholar 

  16. Kane, T.R., Levinson, D.A.: Dynamics, Theory and Applications. McGraw–Hill, New York (1985)

    Google Scholar 

  17. Khan, I.M., Ahn, W., Anderson, K.S., De, S.: A logarithmic complexity floating frame of reference formulation with interpolating splines for articulated multi-flexible-body dynamics. Int. J. Non-Linear Mech. 57, 146–153 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.07.002

    Article  Google Scholar 

  18. Khan, I.M., Anderson, K.S.: Divide-and-conquer-based large deformation formulations for multi-flexible body systems. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 7B. ASME, Portland (2013). https://doi.org/10.1115/DETC2013-12218

    Chapter  Google Scholar 

  19. Khan, I.M., Anderson, K.S.: A logarithmic complexity divide-and-conquer algorithm for multi-flexible-body dynamics including large deformations. Multibody Syst. Dyn. 34(1), 81–101 (2015). https://doi.org/10.1007/s11044-014-9435-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Khan, I.M., Poursina, M., Laflin, J.J., Anderson, K.S.: A framework for adaptive multibody modeling of biopolymers. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 7A. ASME, Portland (2013). https://doi.org/10.1115/DETC2013-13085

    Chapter  Google Scholar 

  21. Laflin, J.J., Anderson, K.S., Khan, I.M.: Strategies for model reduction in adaptive DCA-based multibody modeling of biopolymers. In: Terze, Z., Vrdoljak, M. (eds.) Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics. University of Zagreb Faculty of Mechanical Engineering and Naval Architecture, Zagreb (2013)

    Google Scholar 

  22. Laflin, J.J., Anderson, K.S., Khan, I.M., Poursina, M.: New and extended applications of the divide-and-conquer algorithm for multibody dynamics. J. Comput. Nonlinear Dyn. 9(4), 041,004 (2014). https://doi.org/10.1115/1.4027869

    Article  Google Scholar 

  23. Malczyk, P., Frączek, J.: A divide and conquer algorithm for constrained multibody system dynamics based on augmented lagrangian method with projections-based error correction. Nonlinear Dyn. 70(1), 871–889 (2012). https://doi.org/10.1007/s11071-012-0503-2

    Article  MathSciNet  Google Scholar 

  24. Malczyk, P., Frączek, J., Cuadrado, J.: Parallel index-3 formulation for real-time multibody dynamics simulations. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland (2010)

    Google Scholar 

  25. Morin, S., Redon, S.: A force-feedback algorithm for adaptive articulated-body dynamics simulation. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3245–3250. IEEE, Roma (2007). https://doi.org/10.1109/ROBOT.2007.363973

    Chapter  Google Scholar 

  26. Mukherjee, R.M., Anderson, K.S.: Orthogonal complement based divide-and-conquer algorithm for constrained multibody systems. Nonlinear Dyn. 48(1–2), 199–215 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Mukherjee, R.M., Anderson, K.S.: A logarithmic complexity divide-and-conquer algorithm for multi-flexible articulated body dynamics. J. Comput. Nonlinear Dyn. 2(1), 10–21 (2007). https://doi.org/10.1115/1.2389038

    Article  Google Scholar 

  28. Mukherjee, R.M., Bhalerao, K.D., Anderson, K.S.: A divide-and-conquer direct differentiation approach for multibody system sensitivity analysis. Struct. Multidiscip. Optim. 35(5), 413–429 (2008). https://doi.org/10.1007/s00158-007-0142-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Mukherjee, R.M., Malczyk, P.: Parallel algorithm for modeling multi-rigid body system dynamics with nonholonomic constraints. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 7A. ASME, Portland (2013). https://doi.org/10.1115/DETC2013-13305

    Chapter  Google Scholar 

  30. Poursina, M., Anderson, K.S.: An extended divide-and-conquer algorithm for a generalized class of multibody constraints. Multibody Syst. Dyn. 29(3), 235–254 (2013). https://doi.org/10.1007/s11044-012-9324-9

    Article  MathSciNet  Google Scholar 

  31. Poursina, M., Anderson, K.S.: Canonical ensemble simulation of biopolymers using a coarse-grained articulated generalized divide-and-conquer scheme. Comput. Phys. Commun. 184(3), 652–660 (2013). https://doi.org/10.1016/j.cpc.2012.10.029

    Article  MathSciNet  MATH  Google Scholar 

  32. Poursina, M., Bhalerao, K.D., Flores, S.C., Anderson, K.S., Laederach, A.: Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. In: Johnson, M.L., Brand, L. (eds.) Computer Methods, Part C, Methods in Enzymology, vol. 487, pp. 73–98. Academic Press, Cambridge (2011). https://doi.org/10.1016/B978-0-12-381270-4.00003-2

    Chapter  Google Scholar 

  33. Praprotnik, M., Delle Site, L., Kremer, K.: Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. J. Chem. Phys. 123(22) (2005). https://doi.org/10.1063/1.2132286

  34. Redon, S., Galoppo, N., Lin, M.C.: Adaptive dynamics of articulated bodies. ACM Trans. Graph. 24(3), 936–945 (2005). https://doi.org/10.1145/1186822.1073294

    Article  Google Scholar 

  35. Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin (1988). https://doi.org/10.1007/978-3-642-86464-3

    Book  MATH  Google Scholar 

  36. Rossi, R., Isorce, M., Morin, S., Flocard, J., Arumugam, K., Crouzy, S., Vivaudou, M., Redon, S.: Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design. Bioinformatics 23(13), i408–i417 (2007). https://doi.org/10.1093/bioinformatics/btm191

    Article  Google Scholar 

  37. Schiehlen, W.O., Kreuzer, E.J.: Symbolic computerized derivation of equations of motion. In: Magnus, K. (ed.) Dynamics of Multibody Systems SE-24, International Union of Theoretical and Applied Mechanics, pp. 290–305. Springer, Berlin (1978). https://doi.org/10.1007/978-3-642-86461-2_24

    Chapter  Google Scholar 

  38. Simo, J.C.: A finite strain beam formulation. the three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985). https://doi.org/10.1016/0045-7825(85)90050-7

    Article  MATH  Google Scholar 

  39. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986). https://doi.org/10.1016/0045-7825(86)90079-4

    Article  MATH  Google Scholar 

  40. Simo, J.C., Vu-Quoc, L.: A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int. J. Solids Struct. 27(3), 371–393 (1991). https://doi.org/10.1016/0020-7683(91)90089-X

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was completed under grant 1161872 from the National Science Foundation and the authors are grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy J. Laflin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laflin, J.J., Anderson, K.S. Geometrically exact beam equations in the adaptive DCA framework. Multibody Syst Dyn 47, 1–19 (2019). https://doi.org/10.1007/s11044-019-09669-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09669-1

Keywords

Navigation