Skip to main content
Log in

Flexible multibody dynamics using coordinate reduction improved by dynamic correction

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the efficient dynamic analysis of flexible multibody systems using a robust coordinate reduction technique. Unlike conventional static correction, the formulation is derived by dynamic correction that considers the inertia effect. In this formulation, the constraint and fixed-interface normal modes, which are representative modes in the typical coordinate reduction, are corrected by considering the truncated modal effect with the residual flexibility. Therefore, the proposed method can offer a more precise reduced system without increasing the dimension, which consequently leads to a more accurate and efficient flexible multibody simulation. We implement here the proposed method under augmented formulations of the floating reference frame approach, and test its performance with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  2. Wu, S.C., Haug, E.J., Kim, S.S.: A variational approach to dynamics of flexible multibody systems. J. Struct. Mech. 17(1), 3–32 (1989)

    MathSciNet  Google Scholar 

  3. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shabana, A.A.: Computational Dynamics. Wiley, New York (2001)

    MATH  Google Scholar 

  5. Michael, L., Eberhard, P.: A two-step approach for model reduction in flexible multibody dynamics. Multibody Syst. Dyn. 17(2), 157–176 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Jorg, F., Eberhard, P.: Simulation process of flexible multibody systems with non-modal model order reduction techniques. Multibody Syst. Dyn. 25(3), 313–334 (2011)

    Article  MATH  Google Scholar 

  7. Baumann, M., Eberhard, P.: Interpolation-based parametric model order reduction for material removal in elastic multibody systems. Multibody Syst. Dyn. 39(1), 21–36 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Agrawal, O.P., Shabana, A.A.: Dynamic analysis of multibody systems using component modes. Comput. Struct. 21(6), 1303–1312 (1985)

    Article  Google Scholar 

  9. Koutsovasilis, P., Betelschmdt, M.: Comparison of model reduction techniques for large mechanical systems: a study on an elastic rod. Multibody Syst. Dyn. 20(2), 111–128 (2008)

    Article  MathSciNet  Google Scholar 

  10. Koutsovasilis, P.: Improved component mode synthesis and variants. Multibody Syst. Dyn. 29, 343–359 (2013)

    Article  MathSciNet  Google Scholar 

  11. Boer, S.E., Aarts, R.G.K.M., Meijaard, J.P., Brouwer, D.M., Jonker, J.B.: A nonlinear two-node superelement with deformable-interface surfaces for use in flexible multibody systems. Multibody Syst. Dyn. 34, 53–79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, L., Tiso, P.: Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody Syst. Dyn. (2015) published online

  13. Yoo, W.S., Haug, E.J.: Dynamics of flexible mechanical systems using vibration and static correction modes. J. Mech. Transm. Autom. Des. 108(3), 315–322 (1986)

    Article  Google Scholar 

  14. Guyan, R.J.: Reduction of stiffness and mass matrices. AIAA J. 3(2), 380 (1965)

    Article  Google Scholar 

  15. Irons, B.M.: Structural eigenvalue problems: elimination of unwanted variables. AIAA J. 3, 961 (1965)

    Article  Google Scholar 

  16. Bampton, M.C.C., Craig, R.R.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  17. Craig, R.R., Kurdila, A.J.: Fundamentals of Structural Dynamics. Wiley, New York (2006)

    MATH  Google Scholar 

  18. MacNeal, R.H.: A hybrid method of component mode synthesis. Comput. Struct. 1(4), 581–601 (1971)

    Article  Google Scholar 

  19. Craig, R.R., Chang, C.J.: Free-interface methods of substructure coupling for dynamic analysis. AIAA J. 14(11), 1633–1635 (1976)

    Article  Google Scholar 

  20. Park, K.C., Park, Y.H.: Partitioned component mode synthesis via a flexibility approach. AIAA J. 42(6), 1236–1245 (2004)

    Article  Google Scholar 

  21. Rixen, D.J.: A dual Craig–Bampton method for dynamic substructuring. J. Comput. Appl. Math. 168(1–2), 383–391 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, J.G., Markovic, D.: High-fidelity flexibility based CMS method with interface degrees of freedom reduction. AIAA J. 54(11), 3619–3631 (2016)

    Article  Google Scholar 

  23. O’Callahan, J.C.: A procedure for an improved reduced system (IRS) model. In: Proceedings of the 7th International Modal Analysis Conference, Las Vegas, NV, USA, vol. 1, pp. 17–21 (1989)

    Google Scholar 

  24. Friswell, M.I., Garvey, S.D., Penny, J.E.T.: Model reduction using dynamic and iterated IRS techniques. J. Sound Vib. 186(2), 311–323 (1995)

    Article  MATH  Google Scholar 

  25. Kim, J.G., Boo, S.H., Lee, P.S.: An enhanced AMLS method and its performance. Comput. Methods Appl. Mech. Eng. 287, 90–111 (2015)

    Article  MathSciNet  Google Scholar 

  26. Kim, J.G., Lee, P.S.: An enhanced Craig–Bampton method. Int. J. Numer. Methods Eng. 103, 79–93 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kim, J.G., Park, Y.J., Lee, G.H., Kim, D.N.: A general model reduction with primal assembly in structural dynamics. Comput. Methods Appl. Mech. Eng. 324, 1–28 (2017)

    Article  MathSciNet  Google Scholar 

  28. Kim, S.M., Kim, J.G., Chae, S.W., Park, K.C.: Evaluating mode selection methods for component mode synthesis. AIAA J. 54, 2852–2863 (2016)

    Article  Google Scholar 

  29. Kim, S.S., Haug, E.J.: Selection of deformation modes for flexible multibody dynamics. J. Struct. Mech. 18(4), 565–586 (1990)

    Google Scholar 

  30. Elssel, K., Voss, H.: An a priori bound for automated multilevel substructuring. SIAM J. Matrix Anal. Appl. 28(2), 386–397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kim, J.G., Lee, K.H., Lee, P.S.: Estimating eigenvalue errors in the Craig–Bampton method. Comput. Struct. 193, 54–64 (2014)

    Article  Google Scholar 

  32. Kim, J.G., Lee, P.S.: Posteriori error estimation method for flexibility-based component mode synthesis. AIAA J. 53(10), 2828–2837 (2015)

    Article  MathSciNet  Google Scholar 

  33. Jensen, H.A., Muñoz, A., Papadimitriou, C., Vergara, C.: An enhanced substructure coupling technique for dynamic re-analyses: application to simulation-based problems. Comput. Methods Appl. Mech. Eng. 307, 215–234 (2016)

    Article  MathSciNet  Google Scholar 

  34. Cui, J., Xing, J., Wang, X., Wang, Y., Zhu, S., Zheng, G.: A simultaneous iterative scheme for the Craig–Bampton reduction based substructuring. In: Dynamics of Coupled Structures, vol. 4, pp. 103–114. Springer, Berlin (2017)

    Chapter  Google Scholar 

  35. Lim, J.H., Hwang, D.S., Kim, K.W., Lee, G.H., Kim, J.G.: A coupled dynamic loads analysis of satellites with an enhanced Craig–Bampton approach. Aerosp. Sci. Technol. 69, 114–122 (2017)

    Article  Google Scholar 

  36. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  37. Chu, S.C., Pan, K.C.: Dynamic response of a high-speed Slider–Crank mechanism with an elastic connecting rod. J. Eng. Ind. (1975)

  38. Shabana, A.A.: Dynamics of constrained flexible system using consistent, lumped and hybrid mass formulation. In: Proceeding the ASME (1984)

    Google Scholar 

  39. Nastran, M.: Basic dynamic analysis user’s guide, MSC. Software Corporation. USA, 546 (2004)

Download references

Acknowledgements

The first author has been supported by the Basic Science Research Program and Space Core Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1C1A1A01051499 and NRF-2015M1A3A3A02047111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JG., Han, JB., Lee, H. et al. Flexible multibody dynamics using coordinate reduction improved by dynamic correction. Multibody Syst Dyn 42, 411–429 (2018). https://doi.org/10.1007/s11044-017-9607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9607-2

Keywords

Navigation