Skip to main content

A Simultaneous Iterative Scheme for the Craig-Bampton Reduction Based Substructuring

  • Conference paper
  • First Online:
Dynamics of Coupled Structures, Volume 4

Abstract

A simultaneous iterative procedure for the fixed-interface component modal synthesis (CMS) method is developed in this paper toward fast calculating the modal parameters and ROM of a large-scale and/or complicated structure. Different from existing iterative fixed-interface CMS methods, in the proposed iterative scheme, an eigenvalue independent matrix, whose columns’ projections in the exact reduced space are the global eigenvectors of interest, is chosen as the iterative term and then used as a Ritz basis to generate reduced system matrices. Consequently, all the required modes can be solved simultaneously and a ROM can be derived after one round of iterations. For reference, an implementation is given together with computational considerations. Compared with other methods for solving modal parameters and/or model order reduction, the proposed method has such merits as high computational efficiency, especially for reanalysis tasks and parallel programming. A numerical example is provided to illustrate and validate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this paper, matrices, column vectors, variables and functions and scripts are denoted by bold, bold and italic, italic and roman letters, respectively.

References

  1. Duan, Y.F., Xu, Y.L., Fei, Q.G., Wong, K.Y., Chan, K.W.Y., Ni, Y.Q.: Full 3D finite element model for criticality analysis of Tsing Ma Bridge. In: International Conference on Bridge Engineering, HongKong (2006). CD-Rom

    Google Scholar 

  2. Ni, Y.Q., Xia, Y., Liao, W.Y., Ko, J.M.: Technology innovation in developing the structural health monitoring system for Guangzhou new TV tower. Struct. Control Health Monit. 16 (1), 73–98 (2009)

    Article  Google Scholar 

  3. Wei, F., Liang, L., Zheng, G.T.: Parametric study for dynamics of spacecraft with local nonlinearities. AIAA J 48 (8), 1700–1707 (2010)

    Article  Google Scholar 

  4. Liu, M.H., Zheng, G.T.: Component synthesis method for transient response of nonproportionally damped structures. AIAA J 48 (11), 2556–2563 (2010)

    Article  Google Scholar 

  5. Masson, G., Brik, B.A., Cogan, S., Bouhaddi, N.: Component mode synthesis (CMS) based on an enriched Ritz approach for efficient structural optimization. J. Sound Vib. 296 (4–5), 845–860 (2006)

    Article  Google Scholar 

  6. Mottershead, J.E., Friswell, M.I.: Model updating in structural dynamics: a survey. J. Sound Vib. 167 (2), 347–375 (1993)

    Article  MATH  Google Scholar 

  7. Voormeeren, S., Rixen, D.: Updating component reduction bases of static and vibration modes using preconditioned iterative techniques. Comput. Methods Appl. Mech. Eng. 253 (1), 39–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Craig, R.R., Hale, A.: Review of time-domain and frequency domain component mode synthesis methods. Int. J. Anal. Exp. Modal Anal. 2 (2), 59–72 (1987)

    Google Scholar 

  9. de Klerk, D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J. 46 (5), 1169–1181 (2008)

    Article  Google Scholar 

  10. Hurty, W.C.: Vibrations of structural systems by component mode synthesis. J. Eng. Mech. Am. Soc. Civ. Eng. 86 (4), 51–69 (1960)

    Google Scholar 

  11. Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J. 3 (4), 678–685 (1965)

    Article  Google Scholar 

  12. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J. 6 (7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  13. MacNeal, R.H.: Hybrid method of component mode synthesis. Comput. Struct. 1 (4), 581–601 (1971)

    Article  Google Scholar 

  14. Suarez, L.E., Singh, M.P.: Improved fixed interface method for modal synthesis. AIAA J. 30 (12), 2952–2958 (1992)

    Article  MATH  Google Scholar 

  15. Qiu, J.B., Ying, Z.G., Williams, F.W.: Exact modal synthesis techniques using residual constraint modes. Int. J. Numer. Methods Eng. 40 (13), 2475–2492 (1997)

    Article  MATH  Google Scholar 

  16. Bennighof, J.K., Kim, C.K.: An adaptive multi-level substructuring method for efficient modeling of complex structures. In: Proceedings of the AIAA 33rd SDM Conference, Dallas, pp. 1631–1639 (1992)

    Google Scholar 

  17. Kim, H., Cho, M.: Improvement of reduction method combined with subdomain scheme in large-scale problem. Int. J. Numer. Methods Eng. 70 (2), 206–251 (2007)

    Article  MATH  Google Scholar 

  18. Liu, Z.S., Wu, Z.G.: Iterative-order-reduction substructuring method for dynamic condensation of finite element models. AIAA J. 49 (1), 87–96 (2001)

    Article  Google Scholar 

  19. Friswll, M.I., Garvey, S.D., Penny, J.E.T.: Model reduction using dynamic and iterated IRS techniques. J. Sound Vib. 186, 311–323 (1995)

    Article  MATH  Google Scholar 

  20. Kim, J.G., Lee, P.S.: An enhanced Craig-Bampton method. Int. J. Numer. Methods Eng. 103, 79–93 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. O’Callahan J. A procedure for an improved reduced system (IRS) model. In: Proceeding the 7th International Modal Analysis Conference, Bethel, pp. 17–21 (1989)

    Google Scholar 

  22. Weng, S., Xia, Y., Xu, Y.L., Zhu, H.P.: An iterative substructuring approach to the calculation of eigensolution and eigensensitivity. J. Sound Vib. 330 (14), 3368–3380 (2011)

    Article  Google Scholar 

  23. Cui, J., Guan, X., Zheng, G.T.: A simultaneous iterative procedure for the Kron’s component modal synthesis approach. Int. J. Numer. Methods Eng. 105 (13), 990–1013 (2016)

    Article  MathSciNet  Google Scholar 

  24. Gosselet, P., Rey, C.: Non-overlapping domain decomposition methods in structural mechanics. Arch. Comput. Meth. Eng. 13 (4), 515–572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM: Philadelphia (2000)

    Book  MATH  Google Scholar 

  26. Bathe, K.J., Wilson, E.L.: Numerical Methods in Finite Element Analysis. Prentice-Hall, Engle Cliffs (1989)

    MATH  Google Scholar 

  27. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and intergral opertators. J. Res. Natl. Bur. Stand. 45, 255–282 (1950)

    Article  Google Scholar 

  28. Chen, Y.Q., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35 (3), 1–14 (2008)

    Article  MathSciNet  Google Scholar 

  29. Mao, Y.D., Morris, R., Kaashoek, F.: Optimizing MapReduce for multicore architectures. Technical report MIT-CSAIL-TR-2010–020, MIT (2010)

    Google Scholar 

  30. Friswell, M.I., Garvey, S.D., Penny, J.E.T.: The Convergence of the iterated IRS method. J. Sound Vib. 211 (1), 123–132 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xia, Y., Lin, R.M.: A new iterative order reduction (IOR) method for eigensolutions of large structures. Int. J. Numer. Methods Eng. 59 (1), 153–172 (2004)

    Article  MATH  Google Scholar 

  32. Xia, Y., Lin, R.M.: Improvement on the iterated IRS method for structural eigensolutions. J. Sound Vib. 270 (4–5), 713–727 (2004)

    Article  Google Scholar 

  33. MATLAB Mathematics Release 2014a. The Mathworks, Inc., Natick (2014)

    Google Scholar 

  34. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Nature Science Foundation of China (Grant Numbers: 11272172 and 11072121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangtie Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Cui, J., Xing, J., Wang, X., Wang, Y., Zhu, S., Zheng, G. (2017). A Simultaneous Iterative Scheme for the Craig-Bampton Reduction Based Substructuring. In: Allen, M., Mayes, R., Rixen, D. (eds) Dynamics of Coupled Structures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54930-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54930-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54929-3

  • Online ISBN: 978-3-319-54930-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics