Skip to main content
Log in

The weighted Moore–Penrose generalized inverse and the force analysis of overconstrained parallel mechanisms

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper reveals the relationship between the weighted Moore–Penrose generalized inverse and the force analysis of overconstrained parallel mechanisms (PMs), including redundantly actuated PMs and passive overconstrained PMs. The solution for the optimal distribution of the driving forces/torques of redundantly actuated PMs is derived in the form of a weighted Moore–Penrose inverse. Therefore, different force distributions can be achieved simply by changing the value of the weighted factor matrix in terms of different optimization goals, and this approach greatly improves computational efficiency in solving such problems. In addition, the explicit expression is deduced between the weighted Moore–Penrose generalized inverse and the constraint wrenches solution of general passive overconstrained PMs (in which each supporting limb may supply single or multiple constraint wrenches). In this expression, the weighted factor matrix is composed of the stiffness matrices of each limb’s constraint wrenches. As numerical examples, the driving forces/torques or the constraint forces/couples for two kinds of overconstrained PMs are solved directly by the weighted Moore–Penrose generalized inverse. The verification results show the correctness of the relationship obtained in this paper between the weighted Moore–Penrose generalized inverse and the force analysis of overconstrained PMs. Using the Moore–Penrose generalized inverse to solve the driving forces/torques or constraint forces/couples of overconstrained PMs provides solutions of a unified, simple form and improves computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dasgupta, B., Mruthyunjaya, T.S.: Force redundancy in parallel manipulators: theoretical and practical issues. Mech. Mach. Theory 33, 727–742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Firmani, F., Podhorodeski, R.P.: Force-unconstrained poses for a redundantly-actuated planar parallel manipulator. Mech. Mach. Theory 39, 459–476 (2004)

    Article  MATH  Google Scholar 

  3. Zhao, Y.J., Gao, F., Li, W.M., Liu, W., Zhao, X.C.: Development of a 6-DOF parallel seismic simulator with novel redundant actuation. Mechatronics 19, 422–427 (2009)

    Article  Google Scholar 

  4. Zhao, Y.J., Gao, F.: Dynamic performance comparison of the 8PSS redundant parallel manipulator and its non-redundant counterpart—the 6PSS parallel manipulator. Mech. Mach. Theory 44, 991–1008 (2009)

    Article  MATH  Google Scholar 

  5. Fang, Y.F., Tsai, L.W.: Enumeration of a class of overconstrained mechanisms using the theory of reciprocal screws. Mech. Mach. Theory 39, 1175–1187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, Z., Li, Q.C.: Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method. Int. J. Robot. Res. 22, 59–79 (2003)

    Google Scholar 

  7. Mavroidis, C., Roth, B.: Analysis of overconstrained mechanisms. J. Mech. Des., Trans. ASME 117, 69–74 (1995)

    Article  Google Scholar 

  8. Merlet, J.-P.: Parallel Robots. Kluwer, London (2000)

    Book  MATH  Google Scholar 

  9. Zheng, Y.F., Luh, J.Y.S.: Optimal load distribution for two industrial robots handling a single object. J. Dyn. Syst. Meas. Control, Trans. ASME 111, 232–237 (1989)

    Article  Google Scholar 

  10. Gardner, J.F., Srinivasan, K., Waldron, K.J.: Solution for the force distribution problem in redundantly actuated closed kinematic chains. J. Dyn. Syst. Meas. Control, Trans. ASME 112, 523–526 (1990)

    Article  Google Scholar 

  11. Nahon, M.A., Angeles, J.: Optimization of dynamic forces in mechanical hands. J. Mech. Transm. Autom. Des. 113, 167–173 (1991)

    Article  Google Scholar 

  12. Gao, X.C., Song, S.M., Zheng, C.Q.: Generalized stiffness matrix method for force distribution of robotic systems with indeterminacy. J. Mech. Des., Trans. ASME 115, 585–591 (1993)

    Article  Google Scholar 

  13. Huang, Z., Zhao, Y.S.: The accordance and optimization-distribution equations of the over-determinate inputs of walking machines. Mech. Mach. Theory 29, 327–332 (1994)

    Article  Google Scholar 

  14. Zhao, Y.S., Lu, L., Zhao, T.S., Du, Y.H., Huang, Z.: Dynamic performance analysis of six-legged walking machines. Mech. Mach. Theory 35, 155–163 (2000)

    Article  MATH  Google Scholar 

  15. Sapio, D.V., Srinivasa, N.: A methodology for controlling motion and constraint forces in holonomically constrained systems. Multibody Syst. Dyn. 33, 179–204 (2015)

    Article  MathSciNet  Google Scholar 

  16. Wang, G.R., Zheng, B.: The weighted generalized inverses of a partitioned matrix. Appl. Math. Comput. 155, 221–233 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Doty, K.L.: An essay on the application of weighted generalized inverses in robotics. In: 5th Conference on Recent Advances in Robotics, pp. 11–12 (1992)

    Google Scholar 

  18. Doty, K.L., Claudio, M., Claudio, B.: A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 12, 1–19 (1993)

    Article  Google Scholar 

  19. Vertechy, R., Parenti-Castelli, V.: Static and stiffness analyses of a class of over-constrained parallel manipulators with legs of type US and UPS. In: Proc. IEEE Int. Conf. Rob. Autom, pp. 561–567 (2007)

    Google Scholar 

  20. Wojtyra, M.: Joint reaction forces in multibody systems with redundant constraints. Multibody Syst. Dyn. 14, 23–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wojtyra, M., Frączek, J.: Joint reactions in rigid or flexible body mechanisms with redundant constraints. Bull. Pol. Acad. Sci., Tech. Sci. 60, 617–626 (2012)

    Google Scholar 

  22. Huang, Z., Zhao, Y.S., Liu, J.F.: Kinetostatic analysis of 4-R(CRR) parallel manipulator with overconstraints via reciprocal-screw theory. Adv. Mech. Eng. 2010, 1–11 (2010)

    Google Scholar 

  23. Bi, Z.M., Kang, B.S.: An inverse dynamic model of over-constrained parallel kinematic machine based on Newton–Euler formulation. J. Dyn. Syst. Meas. Control, Trans. ASME 136, 1–9 (2014)

    Article  Google Scholar 

  24. Gallardo, J., Rico, J.M., Frisoli, A., Checcacci, D., Bergamasco, M.: Dynamics of parallel manipulators by means of screw theory. Mech. Mach. Theory 38, 1113–1131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yao, J.T., Hou, Y.L., Chen, J., Lu, L., Zhao, Y.S.: Theoretical analysis and experiment research of a statically indeterminate pre-stressed six-axis force sensor. Sens. Actuators A, Phys. 150, 1–11 (2009)

    Article  Google Scholar 

  26. Wang, Z.J., Yao, J.T., Xu, Y.D., Zhao, Y.S.: Hyperstatic analysis of a fully pre-stressed six-axis force/torque sensor. Mech. Mach. Theory 57, 84–94 (2012)

    Article  Google Scholar 

  27. Kerr, D.R., Griffis, M., Sanger, D.J., Duffy, J.: Redundant grasps, redundant manipulators, and their dual relationship. J. Robot. Syst. 9, 973–1000 (1992)

    Article  Google Scholar 

  28. Neto, M.A., Ambrósio, J.: Stabilization methods for the integration of DAE in the presence of redundant constraints. Multibody Syst. Dyn. 10, 81–105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiong, Z.P., Qin, Y.Y.: Note on the weighted generalized inverse of the product of matrices. J. Comput. Appl. Math. 35, 469–474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sheng, X.P., Chen, G.L.: The generalized weighted Moore–Penrose inverse. J. Comput. Appl. Math. 25, 407–413 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ben-Israel, A., Greville, T.N.E.: Generalized Inverse: Theory and Applications, Wiley-Interscience, New York (1974) (2nd edn. Springer, New York (2002))

    MATH  Google Scholar 

  32. Wu, J., Li, T.M., Xu, B.Q.: Force optimization of planar 2-DOF parallel manipulators with actuation redundancy considering deformation. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 227, 1371–1377 (2013)

    Article  Google Scholar 

  33. Zhao, Y.J., Gao, F.: Dynamic formulation and performance evaluation of the redundant parallel manipulator. Robot. Comput.-Integr. Manuf. 25, 770–781 (2009)

    Article  Google Scholar 

  34. Xu, Y.D., Yao, J.T., Zhao, Y.S.: Inverse dynamics and internal forces of the redundantly actuated parallel manipulators. Mech. Mach. Theory 51, 172–184 (2012)

    Article  Google Scholar 

  35. Xu, Y.D., Liu, W.L., Yao, J.T., Zhao, Y.S.: A method for force analysis of the overconstrained lower mobility parallel mechanism. Mech. Mach. Theory 88, 31–48 (2015)

    Article  Google Scholar 

  36. Kong, X.W., Gosselin, C.M.: Type synthesis of 3-DOF translational parallel manipulators based on screw theory. J. Mech. Des., Trans. ASME 126, 83–92 (2004)

    Article  Google Scholar 

  37. Xu, Y.D., Zhou, S.S., Yao, J.T., Zhao, Y.S.: Rotational axes analysis of the 2-RPU/SPR 2R1T parallel mechanism. Mech. Mach. Sci. 22, 113–121 (2014)

    Article  Google Scholar 

  38. Dai, J.S., Ding, X.L.: Compliance analysis of a three-legged rigidly-connected platform device. J. Mech. Des., Trans. ASME 128, 755–764 (2006)

    Article  Google Scholar 

  39. Pham, H.H., Chen, I.M.: Stiffness modeling of flexure parallel mechanism. Precis. Eng. 29, 467–478 (2005)

    Article  Google Scholar 

  40. Gupta, D.K., Kaul, C.N.: Enclosing the square root of a positive definite symmetric matrix. Int. J. Comput. Math. 71, 105–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hoskins, W.D., Walton, D.J.: Faster method of computing the square root of a matrix. IEEE Trans. Autom. Control AC-23, 494–495 (1978)

    Article  MATH  Google Scholar 

  42. Franca, L.P.: Algorithm to compute the square root of \(3\times3\) positive definite matrix. Comput. Math. Appl. 18, 459–466 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Frommer, A., Hashemi, B., Sablik, T.: Computing enclosures for the inverse square root and the sign function of a matrix. Linear Algebra Appl. 456, 199–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Frommer, A., Hashemi, B.: Verified computation of square roots of a matrix. SIAM J. Matrix Anal. Appl. 31, 1279–1302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Johnson, C.R., Okubo, K., Reams, R.: Uniqueness of matrix square roots and an application. Linear Algebra Appl. 323, 51–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China under Grant 51275439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Zhao.

Appendix:  A method to calculate the square root and the inverse square root of a positive definite matrix

Appendix:  A method to calculate the square root and the inverse square root of a positive definite matrix

Let \(\boldsymbol{A}\), \(\boldsymbol{B} \in \mathbb{C}^{n \times n}\), if \(\boldsymbol{B}^{2} = \boldsymbol{A}\), then \(\boldsymbol{B}\) is a square root of \(\boldsymbol{A}\), denoted by \(\boldsymbol{B} = \boldsymbol{A}^{\frac{1}{2}}\). If \(\boldsymbol{B}\) is a solution of the matrix equation \(\boldsymbol{AB}^{2} = \boldsymbol{I}\), then \(\boldsymbol{B}\) is an inverse square root of \(\boldsymbol{A}\), denoted by \(\boldsymbol{B} = \boldsymbol{A}^{ - \frac{1}{2}}\). There is a vast amount of literature focusing on the square root or the inverse square root of a matrix [4045]. If \(\boldsymbol{A}\) is a nonsingular matrix, its square root and inverse square root always exist.

Particularly, if \(\boldsymbol{A}\) is a positive definite symmetric square matrix, then there exists a unique positive definite symmetric square root \(\boldsymbol{B}\). Several different methods have been proposed for finding the square root of a positive definite symmetric square matrix [40, 42]. Here, we provide a basic method.

Let \(\boldsymbol{A}\), \(\boldsymbol{B} \in \mathbb{C}^{n \times n}\), if there is an invertible matrix \(\boldsymbol{P}\) such that \(\boldsymbol{P}^{ - 1}\boldsymbol{AP} = \boldsymbol{B}\), then \(\boldsymbol{A}\) is similar to \(\boldsymbol{B}\), denoted by \(\boldsymbol{A} \sim \boldsymbol{B}\). If \(\boldsymbol{A} \sim \boldsymbol{B}\), then they have the same eigenvalues but different eigenvectors. In addition, if \(\boldsymbol{A}\) is similar to a diagonal matrix \(\boldsymbol{B}\), then \(\boldsymbol{A}\) is diagonalizable.

If \(\boldsymbol{A}\) is an \(n\) by \(n\) positive definite symmetric Hermitian matrix, it can be diagonalized by using its eigenvectors properly, i.e.,

$$ \boldsymbol{P}^{ - 1}\boldsymbol{AP} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{AP} = \boldsymbol{\varLambda} $$
(41)

where \(\boldsymbol{P}\) is a unitary matrix whose columns consists of \(n\) linearly independent and orthogonal eigenvectors of \(\boldsymbol{A}\), and \(\boldsymbol{\varLambda} = \operatorname {diag}( \lambda_{1},\lambda_{2}, \ldots,\lambda_{n} )\), in which \(\lambda_{i}\) is the \(i\)th eigenvalue of \(\boldsymbol{A}\).

From Eq. (41) we can get

$$ \boldsymbol{A} = \boldsymbol{P\varLambda P}^{ - 1}. $$
(42)

Since \(\boldsymbol{A}\) is a positive definite symmetric Hermitian matrix, all eigenvalues of \(\boldsymbol{A}\) are real and positive, i.e., \(\lambda_{i}\ (i = 1,2, \ldots,n ) > 0\). Thus, the square root of the diagonal matrix \(\boldsymbol{\varLambda}\) can be obtained as \(\boldsymbol{\varLambda}^{\frac{1}{2}} = \operatorname {diag}( \lambda_{1}^{\frac{1}{2}},\lambda_{2}^{\frac{1}{2}}, \ldots,\lambda_{n}^{\frac{1}{2}} )\). Let \(\boldsymbol{B} = \boldsymbol{P\varLambda}^{\frac{1}{2}}\boldsymbol{P}^{ - 1}\), then

$$\begin{aligned} \boldsymbol{B}^{2} &= \boldsymbol{BB} = \bigl( \boldsymbol{P \varLambda}^{\frac{1}{2}}\boldsymbol{P}^{ - 1} \bigr) \bigl( \boldsymbol{P \varLambda}^{\frac{1}{2}}\boldsymbol{P}^{ - 1} \bigr) = \boldsymbol{P \varLambda}^{\frac{1}{2}}\boldsymbol{P}^{ - 1}\boldsymbol{P \varLambda}^{\frac{1}{2}}\boldsymbol{P}^{ - 1} = \boldsymbol{P \varLambda}^{\frac{1}{2}}\boldsymbol{\varLambda}^{\frac{1}{2}}\boldsymbol{P}^{ - 1} \\ & = \boldsymbol{P\varLambda P}^{ - 1} = \boldsymbol{A}. \end{aligned}$$
(43)

Then by the definition of the square root of a given matrix, it follows from Eq. (43) that \(\boldsymbol{B} = \boldsymbol{P\varLambda}^{\frac{1}{2}}\boldsymbol{P}^{ - 1}\) is the unique square root of \(\boldsymbol{A}\), i.e.,

$$ \boldsymbol{A}^{\frac{1}{2}} = \boldsymbol{P\varLambda}^{\frac{1}{2}} \boldsymbol{P}^{ - 1}. $$
(44)

Similarly, the inverse square root of \(\boldsymbol{A}\) can be derived by

$$ \boldsymbol{A}^{ - \frac{1}{2}} = \boldsymbol{P\varLambda}^{ - \frac{1}{2}} \boldsymbol{P}^{ - 1}. $$
(45)

The weighted factor matrices \(\boldsymbol{M}\) and \(\boldsymbol{N}\) in Eq. (11) are positive definite symmetric Hermitian matrices. Therefore, the \(\boldsymbol{M}^{\frac{1}{2}}\), \(\boldsymbol{N}^{\frac{1}{2}}\), \(\boldsymbol{M}^{ - \frac{1}{2}}\) and \(\boldsymbol{N}^{ - \frac{1}{2}}\) can be calculated by Eqs. (44) and (45).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Xu, Y., Yao, J. et al. The weighted Moore–Penrose generalized inverse and the force analysis of overconstrained parallel mechanisms. Multibody Syst Dyn 39, 363–383 (2017). https://doi.org/10.1007/s11044-016-9500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-016-9500-4

Keywords

Navigation