Skip to main content
Log in

A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This work presents a systematic method for the dynamic modeling of multi-rigid links confined within a closed environment. The behavior of the system can be completely characterized by two different mathematical models: a set of highly coupled differential equations for modeling the confined multi-link system when it has no impact with surrounding walls; and a set of algebraic equations for expressing the collision of this open kinematic chain system with the confining surfaces. In order to avoid the Lagrangian formulation (which uses an excessive number of total and partial derivatives in deriving the governing equations of multi-rigid links), the motion equations of such a complex system are obtained according to the recursive Gibbs–Appell formulation. The main feature of this paper is the recursive approach, which is used to automatically derive the governing equations of motion. Moreover, in deriving the motion equations, the manipulators are not limited to planar motions only. In fact, for systematic modeling of the motion of a multi-rigid-link system in 3D space, two imaginary links are added to the \(n\)-real links of a manipulator in order to model the spatial rotations of the system. Finally, a 2D and a 3D case studies are simulated to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Wittenburg, J.: Dynamics of Systems of Rigid Bodies. Teubner, Stuttgart (1977)

    Book  MATH  Google Scholar 

  2. Chang, C.C., Peng, S.T.: Impulsive motion of multibody systems. Multibody Syst. Dyn. 17, 47–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hurmuzlu, Y., Marghitu, D.B.: Rigid body collision of planar kinematic chain with multiple contact points. Int. J. Robot. Res. 13, 82–92 (1994)

    Article  Google Scholar 

  4. Rodriguez, A., Bowling, A.: Solution to indeterminate multipoint impact with frictional contact using constraints. Multibody Syst. Dyn. 28, 313–330 (2012)

    Article  MathSciNet  Google Scholar 

  5. Zhang, H., Brogliato, B., Liu, C.: Dynamics of planar rocking-blocks with Coulomb friction and unilateral constraints: comparisons between experimental and numerical data. Multibody Syst. Dyn. 32, 1–25 (2014)

    Article  MathSciNet  Google Scholar 

  6. Glocker, C.: Energetic consistency conditions for standard impacts Part I: Newton-type inequality impact laws and Kane’s example. Multibody Syst. Dyn. 29, 77–117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Agarwal, A., Shah, S.V., Bandyopadhyay, S., Saha, S.K.: Dynamics of serial kinematic chains with large number of degrees-of-freedom. Multibody Syst. Dyn. 32, 273–298 (2014)

    Article  Google Scholar 

  8. Chenut, X., Fisette, P., Samin, J.-C.L.: Recursive formalism with a minimal dynamic parameterization for the identification and simulation of multibody systems. Application to the human body. Multibody Syst. Dyn. 8, 117–140 (2002)

    Article  MATH  Google Scholar 

  9. Mata, V., Provenzano, S., Valero, F., Cuadrado, J.I.: Serial-robot dynamics algorithms for moderately large number of joints. Mech. Mach. Theory 37, 739–755 (2002)

    Article  MATH  Google Scholar 

  10. Seidi, M., Hajiaghamemar, M., Caccese, V.: Evaluation of effective mass during head impact due to standing falls. Int. J. Crashworthiness 20, 134–141 (2015)

    Article  Google Scholar 

  11. Anderson, K.S., Critchley, J.H.: Improved ‘order-n’ performance algorithm for the simulation of constrained multi-rigid-body dynamic systems. Multibody Syst. Dyn. 9, 185–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mohan, A., Saha, S.K.: A recursive, numerically stable, and efficient simulation algorithm for serial robots. Multibody Syst. Dyn. 17, 291–319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Naudet, J., Lefeber, D., Daerden, F., Terze, Z.: Forward dynamics of open-loop multibody mechanisms using an efficient recursive algorithm based on canonical momenta. Multibody Syst. Dyn. 10, 45–59 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Korayem, M.H., Shafei, A.M.: Application of recursive Gibbs–Appell formulation in deriving the equations of motion of \(N\)-viscoelastic robotic manipulators in 3D space using Timoshenko beam theory. Acta Astronaut. 83, 273–294 (2013)

    Article  Google Scholar 

  15. Korayem, M.H., Shafei, A.M., Absalan, F., Kadkhodaei, B., Azimi, A.: Kinematic and dynamic modeling of viscoelastic robotic manipulators using Timoshenko beam theory: theory and experiment. Int. J. Adv. Manuf. Technol. 71, 1005–1018 (2014)

    Article  Google Scholar 

  16. Korayem, M.H., Shafei, A.M., Doosthoseini, M., Absalan, F., Kadkhodaei, B.: Theoretical and experimental investigation of viscoelastic serial robotic manipulators with motors at the joints using Timoshenko beam theory and Gibbs–Appell formulation. Proc. Inst. Mech. Eng., Part K: J Multi-Body Dyn. (2015). doi:10.1177/1464419315574406

    Google Scholar 

  17. Korayem, M.H., Shafei, A.M., Shafei, H.R.: Dynamic modeling of nonholonomic wheeled mobile manipulators with elastic joints using recursive Gibbs–Appell formulation. Sci. Iran. Trans. B: Mech. Eng. 19, 1092–1104 (2012)

    Article  Google Scholar 

  18. Korayem, M.H., Shafei, A.M., Seidi, E.: Symbolic derivation of governing equations for dual-arm mobile manipulators used in fruit-picking and the pruning of tall trees. Comput. Electron. Agric. 105, 95–102 (2014)

    Article  Google Scholar 

  19. Korayem, M.H., Shafei, A.M.: A new approach for dynamic modeling of n-viscoelastic-link robotic manipulators mounted on a mobile base. Nonlinear Dyn. 79, 2767–2786 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Korayem, M.H., Shafei, A.M.: Motion equation of nonholonomic wheeled mobile robotic manipulator with revolute–prismatic joints using recursive Gibbs–Appell formulation. Appl. Math. Model. 84, 187–206 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Korayem, M.H., Shafei, A.M., Dehkordi, S.F.: Systematic modeling of a chain of \(N\)-flexible link manipulators connected by revolute–prismatic joints using recursive Gibbs–Appell formulation. Arch. Appl. Mech. 39, 1701–1716 (2015)

    MATH  Google Scholar 

  22. Naudet, J., Lefeber, D., Daerden, F., Terze, Z.: Forward dynamics of open-loop multibody mechanisms using an efficient recursive algorithm based on canonical momenta. Multibody Syst. Dyn. 10, 45–59 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14, 137–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gattringer, H., Bremer, H., Kastner, M.: Efficient dynamic modeling for rigid multi-body systems with contact and impact: an \(\mathrm{o}(n)\) formulation. Acta Mech. 219, 111–128 (2011)

    Article  MATH  Google Scholar 

  25. Lot, R., Dalio, M.: A symbolic approach for automatic generation of the equations of motion of multibody systems. Multibody Syst. Dyn. 12, 147–172 (2004)

    Article  MATH  Google Scholar 

  26. Westervelt, E., Grizzle, J., Chevallereau, C., Choi, J., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion (Control and Automation). CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  27. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Shafei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafei, A.M., Shafei, H.R. A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment. Multibody Syst Dyn 38, 21–42 (2016). https://doi.org/10.1007/s11044-015-9496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9496-1

Keywords

Navigation